Vol. 161
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-14
High-Efficiency Dual-Band Rectifier Using Coupled-Line Matching for RF Energy Harvesting Applications
By
Progress In Electromagnetics Research C, Vol. 161, 255-260, 2025
Abstract
This paper presents a compact dual-band RF energy harvesting rectifier designed for operation at 2.45 GHz and 5.2 GHz Industrial, Scientific, and Medical (ISM) bands. The rectifier employs a voltage-doubler topology integrated with a dual-band impedance matching network (MN) composed of a coupled-line section and a microstrip transmission line. The analytical design of the MN is established using the ABCD-matrix formulation to determine the initial modal impedances and electrical lengths, which are subsequently refined through full-wave electromagnetic optimization in ADS. The proposed approach achieves accurate dual-frequency impedance transformation using only two matching segments, significantly simplifying the structure compared with conventional multi-section designs. The prototype, fabricated on a low-cost FR-4 substrate, occupies a compact area of 34×25 mm2. Measurements show high power conversion efficiencies of 75% and 55% at 2.45 GHz and 5.2 GHz, respectively, under a 0 dBm input power and a 1 kΩ load, in close agreement with simulations. The results confirm that the proposed design provides an effective and low-cost solution for ambient RF energy harvesting and low-power IoT applications.
Citation
Yassmeen Mohammed Afify, Ahmed Allam, Haruichi Kanaya, and Adel Bedair Abdel-Rahman, "High-Efficiency Dual-Band Rectifier Using Coupled-Line Matching for RF Energy Harvesting Applications," Progress In Electromagnetics Research C, Vol. 161, 255-260, 2025.
doi:10.2528/PIERC25090506
References

1. Moloudian, Gholamhosein, Mohammadamin Hosseinifard, Sanjeev Kumar, Roy B. V. B. Simorangkir, John L. Buckley, Chaoyun Song, Gualtiero Fantoni, and Brendan O'Flynn, "RF energy harvesting techniques for battery-less wireless sensing, Industry 4.0, and Internet of Things: A review," IEEE Sensors Journal, Vol. 24, No. 5, 5732-5745, Mar. 2024.
doi:10.1109/jsen.2024.3352402

2. Halimi, Md. Ahsan, Taimoor Khan, Daasari Surender, N. Nasimuddin, and S. R. Rengarajan, "Dielectric resonator antennas for RF energy-harvesting/wireless power transmission applications: A state-of-the-art review," IEEE Antennas and Propagation Magazine, Vol. 66, No. 1, 34-45, Feb. 2024.
doi:10.1109/map.2023.3236270

3. Ullah, Md. Amanath, Rasool Keshavarz, Mehran Abolhasan, Justin Lipman, Karu P. Esselle, and Negin Shariati, "A review on antenna technologies for ambient RF energy harvesting and wireless power transfer: Designs, challenges and applications," IEEE Access, Vol. 10, 17231-17267, 2022.
doi:10.1109/access.2022.3149276

4. Afify, Yassmeen M., Ahmed Allam, Asano Tanemasa, and Adel B. Abdel-Rahman, "Wideband circularly polarized antenna with enhanced gain and wide beamwidth for energy harvesting applications," 2022 16th European Conference on Antennas and Propagation (EuCAP), 1-5, Madrid, Spain, 2022.
doi:10.23919/EuCAP53622.2022.9769633

5. Mrnka, Michal, Zbyněk Raida, and Jasmin Grosinger, "Wide-band dielectric resonator antennas for RF energy harvesting," 2015 Conference on Microwave Techniques (COMITE), 1-4, Pardubice, Czech Republic, Apr. 2015.
doi:10.1109/COMITE.2015.7120313

6. Xu, Ziyue, Adam Khalifa, Ankit Mittal, Mehdi Nasrollahpourmotlaghzanjani, Ralph Etienne-Cummings, Nian Xiang Sun, Sydney S. Cash, and Aatmesh Shrivastava, "Analysis and design methodology of RF energy harvesting rectifier circuit for ultra-low power applications," IEEE Open Journal of Circuits and Systems, Vol. 3, 82-96, 2022.
doi:10.1109/ojcas.2022.3169437

7. Halimi, Md. Ahsan, Taimoor Khan, Nasimuddin, Ahmed A. Kishk, and Yahia M. M. Antar, "Rectifier circuits for RF energy harvesting and wireless power transfer applications: A comprehensive review based on operating conditions," IEEE Microwave Magazine, Vol. 24, No. 1, 46-61, Jan. 2023.
doi:10.1109/mmm.2022.3211594

8. Rotenberg, Samuel A., Symon K. Podilchak, Pascual D. Hilario Re, C. Mateo-Segura, George Goussetis, and Jaesup Lee, "Efficient rectifier for wireless power transmission systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 5, 1921-1932, May 2020.
doi:10.1109/tmtt.2020.2968055

9. Mansour, Mohamed M., Yamamoto Shuya, and Haruichi Kanaya, "Development of broadband CPW RF rectifier for wireless electromagnetic energy harvesting," 2020 IEEE Wireless Power Transfer Conference (WPTC), 45-48, Seoul, Korea (South), 2020.
doi:10.1109/WPTC48563.2020.9295548

10. Afify, Yassmeen M., Ahmed Allam, Gomaa M. Elashry, Mohamed M. Mansour, Asano Tanemasa, and Adel B. Abdel-Rahman, "Compact high-efficiency broadband/multi-band stacked back-to-back high-gain rectenna based on fourth-order bandpass filter for green environment applications," AEU --- International Journal of Electronics and Communications, Vol. 170, 154816, 2023.
doi:10.1016/j.aeue.2023.154816

11. Mansour, Mohamed M., Shuya Yamamoto, and Haruichi Kanaya, "Reconfigurable multistage RF rectifier topology for 900 MHz ISM energy-harvesting applications," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 12, 1181-1184, Dec. 2020.
doi:10.1109/lmwc.2020.3029252

12. Afify, Yassmeen M., Ahmed Allam, and Adel B. Abdel-Rahman, "Comparative study of lumped and distributed-element matching networks on performance of 2.45 GHz rectifier," 2023 11th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC), 1-4, Alexandria, Egypt, Dec. 2023.
doi:10.1109/jac-ecc61002.2023.10479611

13. Bahl, Inder J., Fundamentals of RF and Microwave Transistor Amplifiers, John Wiley & Sons, 2009.
doi:10.1002/9780470462348

14. Nguyen, Dang-An, Yujin Choi, and Chulhun Seo, "Dual-band rectifier design with high efficiency using simple dual band-stop network for wireless power transfer," IEEE Access, Vol. 13, 43218-43223, Mar. 2024.
doi:10.1109/access.2024.3382718

15. Nam, Hyungseok, Dang-An Nguyen, Gia Thang Bui, and Chulhun Seo, "A novel design of high-efficiency dual-band inverse Doherty rectifier for wireless power transfer and energy harvesting," IEEE Access, Vol. 11, 143907-143912, Dec. 2023.
doi:10.1109/access.2023.3343361

16. Zhang, Kai Biao, Bai Hua Zeng, Shao Yong Zheng, and Ming Hua Xia, "Efficient single- and dual-band rectifiers with wide range of load variations," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 71, No. 12, 5873-5883, Dec. 2024.
doi:10.1109/tcsi.2024.3426081

17. Niotaki, Kyriaki, Apostolos Georgiadis, Ana Collado, and John S. Vardakas, "Dual-band resistance compression networks for improved rectifier performance," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 12, 3512-3521, Dec. 2014.
doi:10.1109/tmtt.2014.2364830

18. Liu, Jian, Xiu Yin Zhang, and Quan Xue, "Dual-band transmission-line resistance compression network and its application to rectifiers," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 66, No. 1, 119-132, Jan. 2019.
doi:10.1109/tcsi.2018.2852321

19. Kim, Eojin, Yeonsoo Kim, and Juntaek Oh, "Highly efficient dual-band rectifier based on symmetric impedance control network," IEEE Access, Vol. 13, 21594-21599, 2025.
doi:10.1109/access.2025.3536003

20. Ali, Ayanle I., Sibel Zorlu Partal, Salih Kepke, and Hakan P. Partal, "ZigBee and LoRa based wireless sensors for smart environment and IoT applications," 2019 1st Global Power, Energy and Communication Conference (GPECOM), 19-23, Nevsehir, Turkey, Jun. 2019.
doi:10.1109/gpecom.2019.8778505

21. Wu, Yongle, Weinong Sun, Sai-Wing Leung, Yinliang Diao, and Kwok-Hung Chan, "A novel compact dual-frequency coupled-line transformer with simple analytical design equations for frequency-dependent complex load impedance," Progress In Electromagnetics Research, Vol. 134, 47-62, 2013.
doi:10.2528/pier12101906

22. Skyworks, "SMS7630," [Online]. Available: https://datasheet.octopart.com/SMS7630-040LF-Skyworks-%0ASolutionsdatasheet-8832283.pdf.

23. Wang, Defu and Renato Negra, "Design of a dual-band rectifier for wireless power transmission," 2013 IEEE Wireless Power Transfer (WPT), 127-130, Perugia, Italy, May 2013.
doi:10.1109/WPT.2013.6556899

24. Liu, Jian, Mo Huang, and Zisheng Du, "Design of compact dual-band RF rectifiers for wireless power transfer and energy harvesting," IEEE Access, Vol. 8, 184901-184908, Oct. 2020.
doi:10.1109/access.2020.3029603

25. Liu, Yan, Gang Xie, and Jianxin Wang, "High efficiency dual-band rectifiers with wide input power range for wireless power transfer," Microwave and Optical Technology Letters, Vol. 66, No. 7, e34242, Jul. 2024.
doi:10.1002/mop.34242