Vol. 163
Latest Volume
All Volumes
PIERC 163 [2025] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-11
Multilayer Waveguide Bandpass Filters Based on Subwavelength CSRR and Omega Type Inclusions
By
Progress In Electromagnetics Research C, Vol. 163, 20-34, 2025
Abstract
This paper presents the design, modeling, and experimental validation of multilayer waveguide bandpass filters employing two subwavelength resonator topologies: complementary split-ring resonators (CSRRs) and Ω-type cells. A hybrid methodology is adopted, combining equivalent circuit models, polarizability extraction from scattering parameters, and full-wave simulations. Mirrorsymmetric configurations are introduced to suppress frequency splitting and improve band uniformity. For both CSRR and Ω arrays, equivalent LC parameters are derived and incorporated into a transmission-matrix framework, enabling accurate prediction of resonant behavior in cascaded layers. Numerical simulations in WR340 waveguides demonstrate that CSRR arrays achieve narrowband responses with high selectivity, while Ω-cells provide wider passbands and improved tolerance to interlayer spacing. Prototypes fabricated on high-purity aluminum sheets were measured using a vector network analyzer, confirming the theoretical and simulation results. The experimental data show close agreement with the proposed model, validating the scalability of the approach to multilayer designs. Quantitatively, the mirror-symmetric CSRR filter exhibits a center frequency of 2.49 GHz, a fractional bandwidth of 1.8%, and an insertion loss of 1.26 dB, whereas the proposed Ω-based configuration achieves a 2.41 GHz center frequency, 5.6% fractional bandwidth, and only 0.27 dB insertion loss. These results show that the Ω topology attains a wider fractional bandwidth and the consequently lower insertion loss predicted by fractional-bandwidth theory, rather than a reduction of intrinsic resonator loss. The proposed framework thus provides a systematic and efficient route for metamaterial filter synthesis, bridging analytical models, numerical simulations, and experimental validation.
Citation
Ivan Eduardo Diaz Pardo, Juan Domingo Baena Doello, Carlos Arturo Suarez Fajardo, and Hector Guarnizo, "Multilayer Waveguide Bandpass Filters Based on Subwavelength CSRR and Omega Type Inclusions," Progress In Electromagnetics Research C, Vol. 163, 20-34, 2025.
doi:10.2528/PIERC25091603
References

1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

2. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Physical Review Letters, Vol. 93, No. 19, 197401, Nov. 2004.
doi:10.1103/physrevlett.93.197401

3. Bonache, J., I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 265-271, 2006.
doi:10.1109/tmtt.2005.861664

4. Marqués, R., J. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Novel small resonant electromagnetic particles for metamaterial and filter design," Proc. ICEAA, Vol. 3, 439-442, Torino, Italy, 2003.

5. Martel, J., R. Marques, F. Falcone, J. D. Baena, F. Medina, F. Martin, and M. Sorolla, "A new LC series element for compact bandpass filter design," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 5, 210-212, 2004.
doi:10.1109/lmwc.2004.827836

6. Dong, Yuan Dan, Tao Yang, and Tatsuo Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 9, 2211-2223, 2009.
doi:10.1109/tmtt.2009.2027156

7. Bahrami, H., M. Hakkak, and A. Pirhadi, "Using complementary split ring resonators (CSRR) to design bandpass waveguide filters," 2007 Asia-Pacific Microwave Conference, 1-4, Bangkok, Thailand, 2007.
doi:10.1109/apmc.2007.4554819

8. Oliva Aparicio, Antonio, Juan Hinojosa Jiménez, Fernando D. Quesada Pereira, and Alejandro Álvarez Melcón, "Design of rectangular waveguide bandpass filters with transmission zeros using high-Qu complementary split-ring resonators with irises," IEEE Transactions on Microwave Theory and Techniques, Vol. 73, No. 2, 1073-1084, 2025.
doi:10.1109/tmtt.2024.3431195

9. Aparicio, Antonio Oliva, Juan Hinojosa Jiménez, Fernando D. Quesada Pereira, and Alejandro Álvarez Melcón, "Design of evanescent-mode rectangular waveguide inline bandpass filters with transmission zeros using split ring resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 7, 4246-4257, 2024.
doi:10.1109/tmtt.2023.3340954

10. Bage, Amit and Sushrut Das, "Stopband performance improvement of CSRR-loaded waveguide bandpass filters using asymmetric slot structures," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 8, 697-699, 2017.
doi:10.1109/lmwc.2017.2723983

11. Díaz, I. E., J. D. Baena, and C. A. Suárez, "Waveguide filters based on metasurfaces made of subwavelength slot resonators," 2022 Sixteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 40-42, Siena, Italy, 2022.
doi:10.1109/metamaterials54993.2022.9920807

12. Marqués, Ricardo, Francisco Medina, and Rachid Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Physical Review B, Vol. 65, No. 14, 144440, 2002.
doi:10.1103/physrevb.65.144440

13. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/tmtt.2005.845211

14. Pulido-Mancera, L. M. and J. D. Baena, "Equivalent circuit model for thick split ring resonators and thick spiral resonators," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2084-2085, Memphis, TN, USA, 2014.
doi:10.1109/aps.2014.6905369

15. Marqués, Ricardo, Ferran Martín, and Mario Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications, John Wiley & Sons, 2008.

16. Bahl, I. J. and P. Bhartia, Microwave Solid State Circuit Design, John Wiley & Sons, 2003.

17. Díaz-Pardo, Iván, Carlos Arturo Suárez-Fajardo, Gustavo Puerto-Leguizamón, and Tatiana Zona-Ortiz, "Band-pass filters using OSRR cells," Revista Facultad de Ingeniería Universidad de Antioquia, Vol. 74, 60-69, 2015.
doi:10.17533/udea.redin.16695

18. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design-theory and experiments," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2572-2581, 2003.
doi:10.1109/tap.2003.817562

19. Pulido-Mancera, L. M., J. D. Baena, and Javier L. Araque Quijano, "Thickness effects on the resonance of metasurfaces made of SRRs and C-SRRs," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 314-315, Orlando, FL, USA, 2013.
doi:10.1109/aps.2013.6710818

20. Baena, J. D. and L. M. Pulido-Mancera, "Controlling the cross-polarization effects of metasurfaces from the lowest to the highest possible value," 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 367-369, Oxford, UK, 2015.
doi:10.1109/metamaterials.2015.7342453

21. Tretyakov, Sergei, Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

22. Diaz, Ivan, Carlos Arturo Suarez Fajardo, Juan Domingo Baena Doello, and Hector Guarnizo, "Subwavelength resonator for the design of a waveguide-fed metasurface antenna," Progress In Electromagnetics Research C, Vol. 156, 113-120, 2025.
doi:10.2528/pierc25041608

23. Ortiz, N., J. D. Baena, M. Beruete, F. Falcone, M. A. G. Laso, T. Lopetegi, R. Marqués, F. Martín, J. García-García, and M. Sorolla, "Complementary split-ring resonator for compact waveguide filter design," Microwave and Optical Technology Letters, Vol. 46, No. 1, 88-92, 2005.
doi:10.1002/mop.20909

24. Bage, Amit and Sushrut Das, "A compact, wideband waveguide bandpass filter using complementary loaded split ring resonators," Progress In Electromagnetics Research C, Vol. 64, 51-59, 2016.
doi:10.2528/pierc16040102

25. Smith, David R., Mohsen Sazegar, and Insang Yoo, "Equivalence of polarizability and circuit models for waveguide-fed metamaterial elements," IEEE Transactions on Antennas and Propagation, Vol. 73, No. 1, 7-21, 2025.
doi:10.1109/tap.2024.3439728

26. Pfeiffer, Carl and Anthony Grbic, "Metamaterial Huygens' surfaces: Tailoring wave fronts with reflectionless sheets," Physical Review Letters, Vol. 110, No. 19, 197401, May 2013.
doi:10.1103/physrevlett.110.197401

27. Gonzalez, Guillermo, Microwave Transistor Amplifiers: Analysis and Design, Vol. 2, Prentice Hall, New Jersey, 1997.

28. Pozar, David M., Microwave Engineering: Theory and Techniques, 4th Ed., John Wiley & Sons, 2012.

29. Swanson, Daniel G., "Narrow-band microwave filter design," IEEE Microwave Magazine, Vol. 8, No. 5, 105-114, 2007.
doi:10.1109/mmm.2007.904724