Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-08
Numerical and Experimental Analysis of a Reversible Damage Model for Millimeter-Wave Diagnostics of Glass Fiber Reinforced Polymer Structures
By
Progress In Electromagnetics Research C, Vol. 164, 164-173, 2026
Abstract
In this work, a delamination model for millimeter-wave inspections of glass fiber reinforced polymer (GFRP) is proposed that replicates the scattering characteristics of a real delamination. The model can be used not only for the performance assessment of conventional non-destructive testing (NDT) approaches, but also for structural health monitoring (SHM) applications with permanently installed radar sensors in the frequency band from 57 to 65 GHz. Parametric numerical and experimental investigations were carried out for three different cases: (a) delamination represented by two GFRP plates with a defined air gap between the plates, (b) erosion protection tape above a GFRP plate separated by an air gap, and (c) erosion protection tape on top of a rigid foam that has similar dielectric properties to air. All signals have been processed using a damage indicator approach (DI). The numerical and experimental results show a high degree of similarity in the DI curve as a function of the delamination thickness. The differences between simulation and experiment are between 0 and 0.3 mm in delamination thickness. Hence, the proposed model can be used for the qualification of radar-based NDT and SHM systems for various practical applications, e.g. wind turbine blades, eliminating the need for expensive, destructive testing.
Citation
Manuel E. Rao, Jochen Moll, Maximilian Ebel, Peter Kraemer, and Viktor Krozer, "Numerical and Experimental Analysis of a Reversible Damage Model for Millimeter-Wave Diagnostics of Glass Fiber Reinforced Polymer Structures," Progress In Electromagnetics Research C, Vol. 164, 164-173, 2026.
doi:10.2528/PIERC25091709
References

1. Saeed, Najmadeen Mohammed, "Recent advances in structural health monitoring: Techniques, applications and future directions," International Journal of Reliability and Safety, Vol. 18, No. 1, 55-85, 2024.
doi:10.1504/ijrs.2024.139199        Google Scholar

2. Hassani, Sahar, Mohsen Mousavi, and Amir H. Gandomi, "Structural health monitoring in composite structures: A comprehensive review," Sensors, Vol. 22, No. 1, 153, 2021.
doi:10.3390/s22010153        Google Scholar

3. Tang, Wenshuo, Jamie Blanche, Daniel Mitchell, Samuel Harper, and David Flynn, "Characterisation of composite materials for wind turbines using frequency modulated continuous wave sensing," Journal of Composites Science, Vol. 7, No. 2, 75, 2023.
doi:10.3390/jcs7020075        Google Scholar

4. Skolnik, M., Radar Handbook, McGraw-Hill, New York, 2008.

5. Simon, Jonas, Thomas Kurin, Jochen Moll, Oliver Bagemiel, Raphael Wedel, Stefan Krause, Fabian Lurz, Andreas Nuber, Vadim Issakov, and Viktor Krozer, "Embedded radar networks for damage detection in wind turbine blades: Validation in a full-scale fatigue test," Structural Health Monitoring, Vol. 22, No. 6, 4252-4263, 2023.
doi:10.1177/14759217231152815        Google Scholar

6. Beziuk, Grzegorz, Thomas C. Baum, Kamran Ghorbani, and Kelvin J. Nicholson, "Structurally integrated radar in an aerospace composite laminate," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 11, No. 11, 1835-1843, 2021.
doi:10.1109/tcpmt.2021.3118108        Google Scholar

7. Ciattaglia, Gianluca, Grazia Iadarola, Gianmarco Battista, Linda Senigagliesi, Ennio Gambi, Paolo Castellini, and Susanna Spinsante, "Displacement evaluation by mmWave FMCW radars: Method and performance metrics," IEEE Transactions on Instrumentation and Measurement, Vol. 73, 1-13, 2024.
doi:10.1109/tim.2024.3421440        Google Scholar

8. Pramudita, Aloysius Adya, Ding-Bing Lin, Azizka Ayu Dhiyani, Harfan Hian Ryanu, Tjahjo Adiprabowo, and Erfansyah Ali Yudha, "FMCW radar for noncontact bridge structure displacement estimation," IEEE Transactions on Instrumentation and Measurement, Vol. 72, 1-14, 2023.
doi:10.1109/tim.2023.3292960        Google Scholar

9. Ma, Zhanxiong, Jaemook Choi, Liu Yang, and Hoon Sohn, "Structural displacement estimation using accelerometer and FMCW millimeter wave radar," Mechanical Systems and Signal Processing, Vol. 182, 109582, 2023.
doi:10.1016/j.ymssp.2022.109582        Google Scholar

10. Keshmiry, Ayoub, Sahar Hassani, Mohsen Mousavi, and Ulrike Dackermann, "Effects of environmental and operational conditions on structural health monitoring and non-destructive testing: A systematic review," Buildings, Vol. 13, No. 4, 918, 2023.
doi:10.3390/buildings13040918        Google Scholar

11. Mahendran, Javagar, Francesca Schenkel, Birk Hattenhorst, Thomas Musch, Ilona Rolfes, Jan Barowski, and Christian Schulz, "Temperature and humidity effects on electromagnetic waves utilizing 140 GHz radar measurements," 2025 IEEE/MTT-S International Microwave Symposium --- IMS 2025, 713-716, San Francisco, CA, USA, 2025.
doi:10.1109/IMS40360.2025.11103768

12. Simon, Jonas, Jochen Moll, and Viktor Krozer, "Trend decomposition for temperature compensation in a radar-based structural health monitoring system of wind turbine blades," Sensors, Vol. 24, No. 3, 800, 2024.
doi:10.3390/s24030800        Google Scholar

13. Figueiredo, Eloi, Gyuhae Park, Charles R. Farrar, Keith Worden, and Joaquim Figueiras, "Machine learning algorithms for damage detection under operational and environmental variability," Structural Health Monitoring, Vol. 10, No. 6, 559-572, 2011.
doi:10.1177/1475921710388971        Google Scholar

14. Streser, Erik, Sercan Alipek, Manuel Rao, Jonas Simon, Jochen Moll, Peter Kraemer, and Viktor Krozer, "Radar-based damage detection in a wind turbine blade using convolutional neural networks: A proof-of-concept under fatigue loading," Sensors, Vol. 25, No. 11, 3337, 2025.
doi:10.3390/s25113337        Google Scholar

15. He, Wenchao, Wallace Wai-Lok Lai, Xin Sui, and Antonios Giannopoulos, "Delamination characterization in thin asphalt pavement structure using dispersive GPR data," Construction and Building Materials, Vol. 402, 132834, 2023.
doi:10.1016/j.conbuildmat.2023.132834        Google Scholar

16. Liu, Juanyu, Dan G. Zollinger, and Robert L. Lytton, "Detection of delamination in concrete pavements using ground-coupled ground-penetrating radar technique," Transportation Research Record: Journal of the Transportation Research Board, Vol. 2087, No. 1, 68-77, 2008.
doi:10.3141/2087-08        Google Scholar

17. Popovics, J. S., S. Ham, M. T. Ghasr, and R. Zoughi, "Comparison of synthetic aperture radar and impact-echo imaging for detecting delamination in concrete," AIP Conference Proceedings, Vol. 1581, No. 1, 866-871, Baltimore, MD, USA, 2014.
doi:10.1063/1.4864912

18. Tsivouraki, Niki, Konstantinos Tserpes, and Ioannis Sioutis, "Modelling of fatigue delamination growth and prediction of residual tensile strength of thermoplastic coupons," Materials, Vol. 17, No. 2, 362, 2024.
doi:10.3390/ma17020362        Google Scholar

19. Eun, Se-Won, Won-Ho Choi, Hong-Kyu Jang, Jae-Hwan Shin, Jin-Bong Kim, and Chun-Gon Kim, "Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures," Composites Science and Technology, Vol. 116, 18-25, 2015.
doi:10.1016/j.compscitech.2015.04.001        Google Scholar

20. Xu, Xiaojuan, Tao Dai, Jin Luo, Jinling Zhao, Jinhao Qiu, Sile Chen, and Zhaoquan Chen, "Detectability of delamination in laminated CFRPs with diverse stacking sequences using eddy current method with TR pancake coil," NDT & E International, Vol. 136, 102814, 2023.
doi:10.1016/j.ndteint.2023.102814        Google Scholar

21. Akbar, Muhammad F., Ghassan N. Jawad, Laith R. Danoon, and Robin Sloan, "Delamination detection in glass-fibre reinforced polymer (GFRP) using microwave time domain reflectometry," 2018 15th European Radar Conference (EuRAD), 253-256, Madrid, Spain, 2018.
doi:10.23919/EuRAD.2018.8546540

22. Moll, Jochen, Jens Kathol, Claus-Peter Fritzen, Maria Moix-Bonet, Marcel Rennoch, Michael Koerdt, Axel S. Herrmann, Markus G. R. Sause, and Martin Bach, "Open guided waves: Online platform for ultrasonic guided wave measurements," Structural Health Monitoring, Vol. 18, No. 5-6, 1903-1914, 2018.
doi:10.1177/1475921718817169        Google Scholar

23. Baron, Samuel, Benoit Guiffard, and Ala Sharaiha, "Polyurethane membranes for flexible centimeter-wave patch antennas," Journal of Micromechanics and Microengineering, Vol. 24, No. 7, 075020, 2014.
doi:10.1088/0960-1317/24/7/075020        Google Scholar

24. Jankiraman, M., FMCW Radar Design, Artech House, 2018.

25. Pozar, David M., Microwave Engineering, John Wiley & Sons, 2012.