Vol. 161
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-09
Online Monitoring of Permanent-Magnet Flux in PMSM Based on Improved Adaptive Higher-Order Square-Root Cubature Kalman Flux-Linkage Observer
By
Progress In Electromagnetics Research C, Vol. 161, 188-194, 2025
Abstract
To enable accurate online observation of permanent-magnet (PM) flux linkage in permanent-magnet synchronous motors (PMSMs), this paper proposes an improved adaptive higher-order square-root cubature kalman filter (IAHSRCKF) flux-linkage observer. Firstly, a nonlinear PMSM model is established to capture complex operating conditions. Secondly, fifth-order cubature integration and an adaptive estimator are embedded into a square-root cubature Kalman framework, yielding an adaptive fifth-order SRCKF observer that tracks PM flux-linkage variations under parameter drift and disturbances. Then, experimental scenarios are created by perturbing key electromagnetic and mechanical parameters and injecting external time-varying disturbances. Finally, simulation and hardware tests benchmark the proposed IAHSRCKF against UKF, CKF, and SRCKF. Results demonstrate that IAHSRCKF achieves the highest flux-estimation accuracy, exhibits low sensitivity to parameter uncertainties, and maintains strong robustness across complex operating conditions, thereby enabling reliable online monitoring of PM flux linkage.
Citation
Junqin Liu, Zhentong Wang, Tianle Li, Feng Deng, Lin Liu, Kaihui Zhao, and Xiangfei Li, "Online Monitoring of Permanent-Magnet Flux in PMSM Based on Improved Adaptive Higher-Order Square-Root Cubature Kalman Flux-Linkage Observer," Progress In Electromagnetics Research C, Vol. 161, 188-194, 2025.
doi:10.2528/PIERC25091710
References

1. Liu, Junqin, Yin Yang, Xiangfei Li, Kaihui Zhao, Zhixuan Yi, and Zhou Xin, "Improved model-free continuous super-twisting non-singular fast terminal sliding mode control of IPMSM," IEEE Access, Vol. 11, 85361-85373, 2023.
doi:10.1109/access.2023.3303843

2. Yi, Zhixuan, Xiangfei Li, Yang Yin, Junqin Liu, and Kaihui Zhao, "Deep flux weakening control of IPMSM based on d-axis current error integral regulator," Progress In Electromagnetics Research M, Vol. 118, 163-175, 2023.
doi:10.2528/pierm23080101

3. He, Yingshen, Kaihui Zhao, Zhixuan Yi, and Yishan Huang, "Improved terminal sliding mode control of PMSM dual-inertia system with acceleration feedback based on finite-time ESO," Progress In Electromagnetics Research M, Vol. 134, 21-30, 2025.
doi:10.2528/pier25040405

4. Xiao, Qianghui, Zhi Wang, Xiaorui Wei, Yuxin Yang, Yushuang Zhang, and Zhun Cheng, "Double closed-loop model-free super-twisting terminal sliding mode control algorithm of IPMSM based on third-order super-twisting observer," Progress In Electromagnetics Research C, Vol. 149, 47-58, 2024.
doi:10.2528/pierc24072501

5. Liu, Junqin, Zhentong Wang, Feng Deng, Kaihui Zhao, and Xiangfei Li, "Continuous high-order sliding mode optimization control of PMSM based on STSMO," Progress In Electromagnetics Research Letters, Vol. 127, 29-37, 2025.
doi:10.2528/PIERL25070101

6. Li, Xiangfei, Junqin Liu, Yang Yin, and Kaihui Zhao, "Improved super-twisting non-singular fast terminal sliding mode control of interior permanent magnet synchronous motor considering time-varying disturbance of the system," IEEE Access, Vol. 11, 17485-17496, 2023.
doi:10.1109/access.2023.3244190

7. Wang, Jiaoyang, Renjun Zhou, and Junqin Liu, "New non-singular fast terminal sliding mode control of permanent magnet synchronous motor based on super-twisting sliding mode observer," Progress In Electromagnetics Research C, Vol. 146, 151-162, 2024.
doi:10.2528/pierc24061501

8. Mu, Yunkui, Xiangfei Li, and Xuan Chen, "Permanent magnet flux linkage observation for PMSM based on adaptive high-order sliding mode," Journal of Electronic Measurement and Instrumentation, Vol. 34, No. 3, 163-170, 2020.
doi:10.13382/j.jemi.B1902528

9. Zhang, Jie and Rucheng Han, "An improved permanent magnet magnetic link observation algorithm for adaptive permanent magnet synchronous motor," Journal of Taiyuan University of Science and Technology, Vol. 42, No. 1, 26-31, 2021.
doi:10.3969/j.issn.1673-2057.2021.01.005

10. Jiang, Yan, Simi Liu, Xuan Wu, et al., "Online magnet flux linkage identification of PMSM based on position triangular signal injection," Proceedings of the CSEE, Vol. 39, No. 3, 845-856, 2019.
doi:10.13334/j.0258-8013.pcsee.180380

11. Wang, Tao, Ai Yuan Wang, Yong Xing Jin, and Jian Sun, "Research on fault-tolerant control method for demagnetization faults of permanent magnet synchronous motor," 2018 IEEE Student Conference on Electric Machines and Systems, 1-6, Huzhou, China, 2018.
doi:10.1109/scems.2018.8624800

12. Zhao, Kaihui, Jinhua She, Changfan Zhang, Jing He, Gang Huang, and Jianhua Liu, "Robust closed-loop torque control for PMSM of railway traction considering demagnetization," IECON 2019 --- 45th Annual Conference of the IEEE Industrial Electronics Society, Vol. 1, 6916-6921, Lisbon, Portugal, 2019.
doi:10.1109/iecon.2019.8927225

13. Shi, Yuchao, Kai Sun, Hongyan Ma, et al., "Online identification of permanent magnet flux linkage for interior permanent magnet synchronous motor," Transactions of China Electrotechnical Society, Vol. 26, No. 9, 48-53, 2011.
doi:10.19595/j.cnki.1000-6753.tces.2011.09.009

14. Fang, Baling, Wei Li, Dawei Chen, Kaihui Zhao, Qifei Zhang, and Hao Liu, "Parameter identification of permanent magnet synchronous motors based on multi-innovation recursive least squares and multi-innovation extended Kalman filter algorithms," Journal of Shanghai Jiao Tong University, 2025.
doi:10.16183/j.cnki.jsjtu.2025.134

15. Li, Xiangfei, Junqin Liu, Kaihui Zhao, Yang Yin, and Lihua Zou, "An improved model-free sliding mode control algorithm of super-twisting for SPMSM," Progress In Electromagnetics Research C, Vol. 135, 195-210, 2023.
doi:10.2528/pierc23061502

16. Zhang, R. Y., C. S. Zheng, P. C. Shi, L. F. Zhao, C. F. Gong, and C. L. Zhou, "Sensorless control of PMSM based on improved PSO and generalized fifth order CKF algorithm," Electric Machines and Control, Vol. 25, No. 7, 120-128, 2021.
doi:10.15938/j.emc.2021.07.013

17. Li, Xiangfei, Junqin Liu, Kaihui Zhao, Yang Yin, and Lihua Zou, "Improved non-singular fast terminal sensor-less sliding mode control of IPMSM considering external disturbance and parameter perturbation," Progress In Electromagnetics Research B, Vol. 102, 81-98, 2023.
doi:10.2528/pierb23050202