Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-06
A Simple Structure of High-Gain Dual-Beam Fabry-Perot Antenna Design
By
Progress In Electromagnetics Research C, Vol. 164, 117-121, 2026
Abstract
Beam steering antennas are advanced technologies used for directing radio waves in a specific direction without physically moving the antenna. In this paper, a simple two steering beams antenna is designed based on Fabry-Perot structure. The amplitude and phase control theory is introduced to design the electric field phase and electric field strength in the near field to obtain the far-field radiation pattern required for the Fabry-Perot antenna (FPA). The FPA working at 10 GHz with the aperture of 5λ0 × 5λ0 steers to ±30° with the maximum gain of 18 dB for each beam realized by a proper design of the superstrate, which is a key to realizing a beam-steering antenna with a simple structure.
Citation
Chang-Yi Yi, and Yanfei Li, "A Simple Structure of High-Gain Dual-Beam Fabry-Perot Antenna Design," Progress In Electromagnetics Research C, Vol. 164, 117-121, 2026.
doi:10.2528/PIERC25092402
References

1. Lu, Yi-Fong and Yi-Cheng Lin, "A hybrid approach for finite-size Fabry-Pérot antenna design with fast and accurate estimation on directivity and aperture efficiency," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 11, 5395-5401, Nov. 2013.
doi:10.1109/tap.2013.2279221        Google Scholar

2. Hao, Y., A. H. Alomainy, and C. G. Parini, "Antenna‐beam shaping from offset defects in UC‐EBG cavities," Microwave and Optical Technology Letters, Vol. 43, No. 2, 108-112, 2004.
doi:10.1002/mop.20391        Google Scholar

3. Ourir, A., S. N. Burokur, and A. de Lustrac, "Phase-varying metamaterial for compact steerable directive antennas," Electronics Letters, Vol. 43, No. 9, 493-494, Apr. 2007.
doi:10.1049/el:20070298        Google Scholar

4. Sun, Yong, Zhi Ning Chen, Yewen Zhang, Hong Chen, and Terence S. P. See, "Subwavelength substrate-integrated Fabry-Pérot cavity antennas using artificial magnetic conductor," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 30-35, Jan. 2012.
doi:10.1109/tap.2011.2167902        Google Scholar

5. Feresidis, A. P., G. Goussetis, Shenhong Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 209-215, Jan. 2005.
doi:10.1109/tap.2004.840528        Google Scholar

6. Wang, Qiming, Cheng Pang, and Jiaran Qi, "A novel dual-beam high gain beam scanning Fabry-Pérot cavity antenna based on bidirectional asymmetric transmission metasurface," 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 1157-1158, Firenze, Italy, 2024.
doi:10.1109/ap-s/inc-usnc-ursi52054.2024.10685946

7. Singh, Amit K. and Seong-OoK Park, "Dual beam high gain antenna for 5th generation communication system using metasurface lens," 2019 8th Asia-Pacific Conference on Antennas and Propagation (APCAP), 456-457, Incheon, Korea (South), 2019.
doi:10.1109/apcap47827.2019.9472134

8. Yu, Chang and Shao Yong Zheng, "A compact switched dual-beam antenna array with high gain," 2021 IEEE Conference on Antenna Measurements & Applications (CAMA), 31-34, Antibes Juan-les-Pins, France, 2021.
doi:10.1109/cama49227.2021.9703533

9. Bashir, Gazali, Amit K. Singh, and Nitin Bhartiya, "Dual beam high gain digitally coded huygens metasurface lens antenna for millimeter wave applications," 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 1039-1040, Firenze, Italy, 2024.
doi:10.1109/ap-s/inc-usnc-ursi52054.2024.10686014

10. Zhang, Pengfei, Wenmei Zhang, Xinwei Chen, Guorui Han, Jinrong Su, and Rongcao Yang, "Low-sidelobe dual-beam antenna based on metasurface with independently regulated amplitude/phase," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 10, 2382-2386, Oct. 2023.
doi:10.1109/lawp.2023.3288601        Google Scholar

11. Dave, Aditya and Rhonda Franklin, "Single feed dual beam antenna using metamaterial surfaces for near-field phase manipulation," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 621-622, Singapore, Singapore, 2021.
doi:10.1109/aps/ursi47566.2021.9704494

12. Khang, Gwon Gu, Seong Ju Kim, and Dongho Kim, "High-gain Fabry-Pérot cavity antenna with an artificial magnetic conductor side wall," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 9, 2245-2249, Sep. 2023.
doi:10.1109/lawp.2023.3281969        Google Scholar

13. Wang, Qiming, Yuzhong Wang, Ari Sihvola, and Jiaran Qi, "Aperture-shared dual-band high-gain beam-scanning antenna hybridizing reflection-mode Fabry-Pérot cavity and wide-angle reflectarray," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 7, 2021-2025, Jul. 2024.
doi:10.1109/lawp.2024.3377269        Google Scholar

14. Shahzadi, Iram, Davide Comite, Maksim V. Kuznetcov, and Symon K. Podilchak, "Compact dual-polarized Fabry-Pérot leaky-wave antenna for full-duplex broadband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 9, 2693-2697, Sep. 2024.
doi:10.1109/lawp.2024.3404640        Google Scholar

15. Gu, Lizheng, Wanchen Yang, Quan Xue, and Wenquan Che, "A ±45° dual-polarized dual-beam series-fed metasurface antenna array with stable beam angle," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8366-8375, Dec. 2021.
doi:10.1109/tap.2021.3083833        Google Scholar

16. Fang, Shi, Li Zhang, Yunjie Guan, Zibin Weng, and Xinyun Wen, "A wideband Fabry-Pérot cavity antenna with single-layer partially reflective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 2, 412-416, Feb. 2023.
doi:10.1109/lawp.2022.3214230        Google Scholar

17. Chatterjee, Anirban, Koushik Dutta, Satyajit Chakrabarti, and Raj Mittra, "Advanced design of high-gain Fabry-Pérot cavity antenna offering wide common impedance and gain bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 5, 1214-1218, May 2023.
doi:10.1109/lawp.2023.3236771        Google Scholar

18. Yin, Jiexi, Qun Lou, Haiming Wang, Zhi Ning Chen, and Wei Hong, "Broadband dual-polarized single-layer reflectarray antenna with independently controllable 1-bit dual beams," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 6, 3294-3302, Jun. 2021.
doi:10.1109/tap.2020.3037686        Google Scholar