Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-27
Compact and Broadband CPW-to-RWG Transition Using 180° Phase Shifter
By
Progress In Electromagnetics Research C, Vol. 164, 51-57, 2026
Abstract
In this paper, a compact and broadband 50-Ω coplanar waveguide-to-rectangular waveguide (CPW-to-RWG) transition using a 180° phase shifter and a meandered dipole is proposed. The frequency range, for which the reflection coefficient is smaller than -15 dB, covers the whole X-band (8.2~12.4 GHz). In addition to the broadband performance, the transition occupies a small length of 7.37 mm. Furthermore, the characteristic impedance of the coplanar waveguide is 50 Ω, which conforms to the commonly used 50 Ω impedance of radio frequency systems. To further reduce the circuit size, a compact and broadband 50-Ω CPW-to-RWG transition using an inductance-compensated 180° phase shifter and a meandered dipole is proposed. The frequency range, for which the reflection coefficient is smaller than -15 dB, also covers the whole X-band (8.2~12.4 GHz). Besides, the transition size is reduced from 7.37 mm to 6.55 mm, which is smaller than a quarter-wavelength. Furthermore, the characteristic impedance of the coplanar waveguide is of the nominal value of 50 Ω.
Citation
Yueh-Hsien Cheng, and Chun-Long Wang, "Compact and Broadband CPW-to-RWG Transition Using 180° Phase Shifter," Progress In Electromagnetics Research C, Vol. 164, 51-57, 2026.
doi:10.2528/PIERC25092403
References

1. Ponchak, G. E. and R. N. Simons, "A new rectangular waveguide to coplanar waveguide transition," IEEE International Digest on Microwave Symposium, Vol. 1, 491-492, Dallas, TX, USA, 1990.
doi:10.1109/MWSYM.1990.99626

2. Shireen, Rownak, Shouyuan Shi, Peng Yao, Christopher A. Schuetz, Julien Macario, and Dennis W. Prather, "CPW to rectangular waveguide transition on an LiNbO substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 6, 1494-1499, Jun. 2009.
doi:10.1109/TMTT.2009.2020673        Google Scholar

3. Fang, Ruei-Ying, Cheng-Tze Wang, and Chun-Long Wang, "A direct CPW-to-rectangular waveguide transition using a dipole slot antenna," 2009 European Microwave Conference (EuMC), 157-160, Rome, Italy, 2009.
doi:10.23919/EUMC.2009.5296536

4. Dong, Yunfeng, Tom K. Johansen, Vitaliy Zhurbenko, and Peter Jesper Hanberg, "Rectangular waveguide-to-coplanar waveguide transitions at U-band using E-plane probe and wire bonding," 2016 46th European Microwave Conference (EuMC), 5-8, London, UK, 2016.
doi:10.1109/EuMC.2016.7824263

5. Mottonen, V. S., "Wideband coplanar waveguide-to-rectangular waveguide transition using fin-line taper," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, 119-121, Feb. 2005.
doi:10.1109/lmwc.2004.842855        Google Scholar

6. Lin, Ting-Huei and Ruey-Beei Wu, "CPW to waveguide transition with tapered slotline probe," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 7, 314-316, Jul. 2001.
doi:10.1109/7260.933782        Google Scholar

7. Mottonen, V. S. and A. V. Raisanen, "Novel wide-band coplanar waveguide-to-rectangular waveguide transition," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1836-1842, Aug. 2004.
doi:10.1109/tmtt.2004.831580        Google Scholar

8. Fang, Ruei-Ying and Chun-Long Wang, "Miniaturized coplanar waveguide to rectangular waveguide transition using inductance-compensated slotline," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 2, No. 10, 1666-1671, Oct. 2012.
doi:10.1109/tcpmt.2012.2208460        Google Scholar

9. Ma, K.-P., Y. Qian, and T. Itoh, "Analysis and applications of a new CPW-slotline transition," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 4, 426-432, Apr. 1999.
doi:10.1109/22.754876        Google Scholar