Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-10
Quantitative Comparison Study on the Impulse Characteristics of Typical Radial Grounding Electrodes in Transmission Lines
By
Progress In Electromagnetics Research C, Vol. 164, 195-207, 2026
Abstract
To reveal the impulse behavior of radial grounding electrodes with different geometries, a comparative analysis was performed on three typical types: cross-shaped, Y-shaped, and rectangular ray-shaped electrodes. Existing research often examines only a single lightning waveform or influencing factor without addressing the coupled effects of electrode shape and soil resistivity. In this work, CDEGS simulation software was used to analyze the lightning transient characteristics of the grounding electrodes. Multiple lightning current waveforms and soil resistivity levels were considered to quantitatively compare the power frequency resistance, impulse resistance, ground potential rise, step voltage, and frequency-domain response. The results indicate that the rectangular ray-shaped electrode exhibits better impulse performance in low-resistivity soils (150 Ω·m), whereas the cross- and Y-shaped electrodes performed more effectively in high-resistivity soils (2000 Ω·m). For mountainous regions with high lightning density, a cross-shaped configuration is preferred owing to its smaller footprint and lower inductive effect. In high-resistivity areas with infrequent lightning, a Y-shaped electrode provides a more favorable overall protection
Citation
Wen Cao, Jiarui Zhang, Wei Shen, and Yasong Cao, "Quantitative Comparison Study on the Impulse Characteristics of Typical Radial Grounding Electrodes in Transmission Lines," Progress In Electromagnetics Research C, Vol. 164, 195-207, 2026.
doi:10.2528/PIERC25092903
References

1. Wu, Hao, Jian Wang, Dongliang Nan, Qiushi Cui, and Wenyuan Li, "Fault location and fault cause identification method for transmission lines based on pose normalized multi-output convolutional nets," IEEE Transactions on Instrumentation and Measurement, Vol. 74, 1-12, 2025.
doi:10.1109/tim.2024.3488157        Google Scholar

2. Guo, Jun, Qun-Shuang Zheng, Wei-Chen Xie, Yan-Zhao Xie, and Sergey V. Tkachenko, "High-frequency electromagnetic field coupling to transmission line with discontinuity above a lossy ground," IEEE Transactions on Electromagnetic Compatibility, Vol. 66, No. 2, 615-625, Apr. 2024.
doi:10.1109/temc.2024.3352037        Google Scholar

3. Bourscheidt, Vandoir, Osmar Pinto, and Kleber P. Naccarato, "Improvements on lightning density estimation based on analysis of lightning location system performance parameters: Brazilian case," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 3, 1648-1657, Mar. 2014.
doi:10.1109/tgrs.2013.2253109        Google Scholar

4. Mohamad Nasir, Nur Alia Farina, Mohd Zainal Abidin Ab Kadir, Miszaina Osman, Muhamad Safwan Abd Rahman, Ungku Anisa Ungku Amirulddin, Mohd Solehin Mohd Nasir, Nur Hazirah Zaini, and Nik Hakimi Nik Ali, "Impact of earthing system designs and soil characteristics on tower footing impedance and ground potential rise: A modelling approach for sustainable power operation," Sustainability, Vol. 13, No. 15, 8370, Jul. 2021.
doi:10.3390/su13158370        Google Scholar

5. Hu, Yuanchao, Yan Cheng, Zhipeng Jiang, Yunzhu An, Seunggil Jeon, and Wen Zhou, "Simulation and structure optimization of grounding circuit model for power transmission line tower," Journal of Circuits, Systems and Computers, Vol. 31, No. 16, 2250278, 2022.
doi:10.1142/s0218126622502784        Google Scholar

6. Formisano, Alessandro, Sami Barmada, and Marco Raugi, "Impact of nearby lightning strikes on wireless power transfer ground assembly," IEEE Transactions on Magnetics, Vol. 59, No. 5, 1-4, May 2023.
doi:10.1109/tmag.2022.3233470        Google Scholar

7. Heidler, Fridolin H. and Christian Paul, "Field enhancement by lightning strikes to tall tower versus lightning strikes to flat ground," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 2, 550-557, Apr. 2021.
doi:10.1109/temc.2020.3021202        Google Scholar

8. Koike, Shunsuke, Yoshihiro Baba, Toshihiro Tsuboi, and Vladimir A. Rakov, "Lightning current waveforms inferred from far-field waveforms for the case of strikes to tall objects," IEEE Transactions on Electromagnetic Compatibility, Vol. 65, No. 4, 1162-1169, Aug. 2023.
doi:10.1109/temc.2023.3261422        Google Scholar

9. Ishimoto, Kazuyuki, Fabio Tossani, Fabio Napolitano, Alberto Borghetti, and Carlo Alberto Nucci, "Direct lightning performance of distribution lines with shield wire considering LEMP effect," IEEE Transactions on Power Delivery, Vol. 37, No. 1, 76-84, Feb. 2022.
doi:10.1109/tpwrd.2021.3053620        Google Scholar

10. Shariatinasab, Reza, Jalil Ghayur Safar, Javad Gholinezhad, and Jinliang He, "Analysis of lightning-related stress in transmission lines considering ionization and frequency-dependent properties of the soil in grounding systems," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 6, 2849-2857, Dec. 2020.
doi:10.1109/temc.2020.2990207        Google Scholar

11. Datsios, Zacharias G., Pantelis N. Mikropoulos, and Thomas E. Tsovilis, "Effects of lightning channel equivalent impedance on lightning performance of overhead transmission lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 3, 623-630, Jun. 2019.
doi:10.1109/temc.2019.2900420        Google Scholar

12. Paul, Christian, Fridolin H. Heidler, and Wolfgang Schulz, "Performance of the european lightning detection network EUCLID in case of various types of current pulses from upward lightning measured at the Peissenberg Tower," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 1, 116-123, 2020.
doi:10.1109/TEMC.2019.2891898        Google Scholar

13. Velásquez, Ricardo Manuel Arias and Jennifer Vanessa Mejía Lara, "Failures in overhead lines grounding system and a new improve in the IEEE and national standards," Engineering Failure Analysis, Vol. 100, 103-118, 2019.
doi:10.1016/j.engfailanal.2019.02.033        Google Scholar

14. Sekioka, S., H. Hayashida, T. Hara, and A. Ametani, "Measurements of grounding resistances for high impulse currents," IEE Proceedings --- Generation, Transmission and Distribution, Vol. 145, No. 6, 693-699, Nov. 1998.
doi:10.1049/ip-gtd:19982009        Google Scholar

15. Ramamoorty, M., M. M. Babu Narayanan, S. Parameswaran, and D. Mukhedkar, "Transient performance of grounding grids," IEEE Transactions on Power Delivery, Vol. 4, No. 4, 2053-2059, Oct. 1989.
doi:10.1109/61.35630        Google Scholar

16. Motoyama, Hideki, "Electromagnetic transient response of buried bare wire and ground grid," IEEE Transactions on Power Delivery, Vol. 22, No. 3, 1673-1679, Jul. 2007.
doi:10.1109/tpwrd.2007.899586        Google Scholar

17. Motoyama, Hideki, "Experimental and analytical studies on lightning surge characteristics of a buried bare wire," Electrical Engineering in Japan, Vol. 164, No. 3, 35-41, Aug. 2008.
doi:10.1002/eej.20532        Google Scholar

18. Visacro, S. and G. Rosado, "Response of grounding electrodes to impulsive currents: An experimental evaluation," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 1, 161-164, Feb. 2009.
doi:10.1109/temc.2008.2008396        Google Scholar

19. Bezerra, Gabriel Vidal Negreiros, Fernando Augusto Moreira, Tarso V. Ferreira, and Rafael Alipio, "Concrete encased grounding: Lightning response analysis considering the frequency dependence of soil," IEEE Transactions on Electromagnetic Compatibility, Vol. 66, No. 3, 879-889, Jun. 2024.
doi:10.1109/temc.2024.3384145        Google Scholar

20. Kumar, A. Senthil, Pramod K. Bhandiwad, and Krishnan Manickavasagam, "Impulse efficient optimum impedance grounding electrode configuration for lightning transients," IEEE Transactions on Electromagnetic Compatibility, Vol. 65, No. 6, 1990-1997, Dec. 2023.
doi:10.1109/temc.2023.3300539        Google Scholar

21. Kumar A, Senthil and Krishnan Manickavasagam, "Computation of effective length of enhancement for vertical electrode under lightning transients," IEEE Transactions on Electromagnetic Compatibility, Vol. 64, No. 6, 2141-2148, Dec. 2022.
doi:10.1109/temc.2022.3182872        Google Scholar

22. Clark, David, Salah Mousa, Noureddine Harid, Huw Griffiths, and Abderahmane Haddad, "Lightning current performance of conventional and enhanced rod ground electrodes," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 4, 1179-1188, Aug. 2021.
doi:10.1109/temc.2021.3059277        Google Scholar

23. Grcev, Leonid, Blagoja Markovski, and Mirko Todorovski, "General formulas for lightning impulse impedance of horizontal and vertical grounding electrodes," IEEE Transactions on Power Delivery, Vol. 36, No. 4, 2245-2248, Aug. 2021.
doi:10.1109/tpwrd.2021.3080137        Google Scholar

24. Grcev, Leonid, Blagoja Markovski, and Mirko Todorovski, "Lightning performance of multiple horizontal, vertical and inclined grounding electrodes," IEEE Transactions on Power Delivery, Vol. 37, No. 5, 3782-3791, Oct. 2022.
doi:10.1109/tpwrd.2021.3137361        Google Scholar

25. Xue, Jian, Huan Huang, Li Cai, Zhiling Xu, Yuqian Fang, Jianguo Wang, and Yadong Fan, "Lightning impulse impedance and surface potential distribution of 10 kV distribution line tower: Field test and simulation," IEEE Transactions on Power Delivery, Vol. 37, No. 1, 415-422, Feb. 2022.
doi:10.1109/tpwrd.2021.3061210        Google Scholar

26. Huang, Lin, Lijun Zhou, Dong Zhang, Dongyang Wang, Weifu Gu, and Sixiang Chen, "Research on impulse impedance model and protection optimization of transmission tower grounding device in mountainous area," IET Science, Measurement & Technology, Vol. 15, No. 8, 632-644, Oct. 2021.
doi:10.1049/smt2.12064        Google Scholar

27. Dan, Yihua, Ruixuan Zhang, Yongye Wu, Yiqiao Li, Xuement Wang, and Jian Yang, "Tower impulse grounding resistance measurement based on multiple frequency impedance," IET Generation, Transmission & Distribution, Vol. 17, No. 15, 3488-3500, Aug. 2023.
doi:10.1049/gtd2.12876        Google Scholar

28. Dan, Yihua, Junjun Yin, Jian Yang, and Huizhang Yang, "Influence analysis of calculated horizontally layered soil parameters on grounding parameters," High Voltage, Vol. 8, No. 2, 421-430, Apr. 2023.
doi:10.1049/hve2.12257        Google Scholar

29. Gao, F., L. Yang, J. Guo, J. Zhang, J. Wang, and Y. Li, "Research on impulse characteristics and simulation model of single extended grounding electrode," High Voltage Apparatus, Vol. 56, No. 4, 148-152,158, 2020.
doi:10.13296/j.1001-1609.hva.2020.04.023        Google Scholar

30. Qi, S. and H. Zhao, "Optimization and design of protection characteristics for radial grounding conductors of line towers," Power System And Clean Energy, Vol. 38, No. 1, 1-6, Jan. 2022.
doi:10.3969/j.issn.1674-3814.2022.01.001        Google Scholar

31. Shi, F., D. Yang, X. Wang, H. Song, T. Yang, and X. Hu, "Quantitative comparison of impact characteristics between circular grounding body and herringbone grounding body," Insulators and Surge Arresters, No. 6, 130-136+158, Dec. 2022.
doi:10.16188/j.isa.1003-8337.2022.06.019        Google Scholar

32. Liu, Wei, Yuanchao Hu, Haipeng Tian, Zhipeng Jiang, Xiaole Su, Jie Xiong, Wei Su, and Yi Wang, "Research on lightning overvoltage protection of line-adjacent pipelines based on solid-state decoupling," Applied Sciences, Vol. 13, No. 22, 12529, Nov. 2023.
doi:10.3390/app132212529        Google Scholar

33. Alyami, Saeed, "Grid grounding calculations for a 132-KV substation using soil backfilling," IEEE Access, Vol. 7, 104933-104940, Aug. 2019.
doi:10.1109/access.2019.2932447        Google Scholar

34. Zhang, J., W. Cao, and S. Hu, "The influence of transmission corridor tower grounding electrode shapes on the impulse interference of adjacent secondary cables," Advances in Electrical and Computer Engineering, Vol. 25, No. 3, 3-12, 2025.
doi:10.4316/AECE.2025.03001        Google Scholar

35. Wang, Xinhua, Yuexin Wang, Tao Sun, Xuyun Yang, Lin Yang, and Yongsheng Qi, "Study of transmission line AC interference with steel-buried pipelines under lightning strikes," Electric Power Systems Research, Vol. 218, 109226, May 2023.
doi:10.1016/j.epsr.2023.109226        Google Scholar

36. Liu, Ya, Jingang Wang, Pengcheng Zhao, Yaqin Tao, Zhi Xu, Xiaojun Yan, and Changjian Xu, "Refined modeling calculation of electromagnetic fields when lightning strikes thermal power plant and optimized layouts of sensitive devices," Electric Power Systems Research, Vol. 202, 107562, Jan. 2022.
doi:10.1016/j.epsr.2021.107562        Google Scholar

37. Guo, Lei, Weifu Gu, Bin Liu, Yi Zeng, and Sixiang Chen, "Impulse impedance modeling and application of tower grounding device," Transactions of China Electrotechnical Society, Vol. 35, No. 10, 2239-2247, 2020.
doi:10.19595/j.cnki.1000-6753.tces.190542        Google Scholar