Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-06
Au Nanopatterned LT-GaAs Based h-Shaped Photoconductive Antenna for Terahertz Applications
By
Progress In Electromagnetics Research C, Vol. 164, 143-153, 2026
Abstract
This manuscript presents the design of a nanopatterned H-shaped photoconductive antenna on an LT-GaAs substrate for terahertz applications. The use of gold nanoparticles and Si lens in the gap between two electrodes improves the photoconductive conductive antenna's low efficiency. It is noticed that the proposed PCA resonates at 1.35 THz with -24.2 dB, 1.65 THz with -22.1 dB, and 2.4 THz with -21.32 dB reflection coefficient. Further, with the Si lens, PCA resonates at 2.15 THz with a -30.2 dB reflection coefficient. Moreover, the nanopatterned H-shaped photoconductive antenna resonates at 1.7 THz with the minimum reflection level of -40 dB. These results indicate that the reflection in the photoconductive antenna can be reduced using the nanopatterning technique. This further increases the efficiency of the photoconductive antenna. The proposed H-shaped photoconductive antenna is designed and optimised using the COMSOL Multiphysics platform.
Citation
Sheo Kumar Mishra, Palakkal Mohamed Mashood, Ashish Singh, Shekhara Kavitha, Himanshu Singh, and Ravi Shankar Saxena, "Au Nanopatterned LT-GaAs Based h-Shaped Photoconductive Antenna for Terahertz Applications," Progress In Electromagnetics Research C, Vol. 164, 143-153, 2026.
doi:10.2528/PIERC25101103
References

1. Farhad, Arshad and Jae-Young Pyun, "Terahertz meets AI: The state of the art," Sensors, Vol. 23, No. 11, 5034, 2023.
doi:10.3390/s23115034        Google Scholar

2. Jiang, Wei, Qiuheng Zhou, Jiguang He, Mohammad Asif Habibi, Sergiy Melnyk, Mohammed El-Absi, Bin Han, Marco Di Renzo, Hans Dieter Schotten, Fa-Long Luo, et al. "Terahertz communications and sensing for 6G and beyond: A comprehensive review," IEEE Communications Surveys & Tutorials, Vol. 26, No. 4, 2326-2381, 2024.
doi:10.1109/comst.2024.3385908        Google Scholar

3. Krozer, Viktor, Torsten Löffler, Jørgen Dall, Anders Kusk, Finn Eichhorn, Rasmus Kjelsmark Olsson, Jonas Due Buron, Peter Uhd Jepsen, Vitaliy Zhurbenko, and Thomas Jensen, "Terahertz imaging systems with aperture synthesis techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 7, 2027-2039, 2010.
doi:10.1109/tmtt.2010.2050246        Google Scholar

4. Armstrong, Carter M., "The truth about terahertz," IEEE Spectrum, Vol. 49, No. 9, 36-41, 2012.
doi:10.1109/mspec.2012.6281131        Google Scholar

5. Jha, Kumud Ranjan and G. Singh, "Terahertz planar antennas for future wireless communication: A technical review," Infrared Physics & Technology, Vol. 60, 71-80, 2013.
doi:10.1016/j.infrared.2013.03.009        Google Scholar

6. Liu, Jia, Wen-Hui Fan, Xu Chen, and Jun Xie, "Identification of high explosive RDX using terahertz imaging and spectral fingerprints," Journal of Physics: Conference Series, Vol. 680, No. 1, 012030, 2016.
doi:10.1088/1742-6596/680/1/012030

7. Kurmi, Yashwant and Vijayshri Chaurasia, "Hidden explosive detection systems for vehicle," International Journal of Computer Applications, Vol. 130, No. 10, 16-19, 2015.
doi:10.5120/ijca2015907080        Google Scholar

8. Skvortsov, L. A., "Standoff detection of hidden explosives and cold and fire arms by terahertz time-domain spectroscopy and active spectral imaging," Journal of Applied Spectroscopy, Vol. 81, No. 5, 725-749, 2014.
doi:10.1007/s10812-014-9998-2        Google Scholar

9. Piprek, Joachim, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, Academic Press, 2003.

10. Tani, Masahiko, Michael Herrmann, and Kiyomi Sakai, "Generation and detection of terahertzpulsed radiation with photoconductive antennas and its application toimaging," Measurement Science and Technology, Vol. 13, No. 11, 1739, 2002.
doi:10.1088/0957-0233/13/11/310        Google Scholar

11. Yu, Calvin, Shuting Fan, Yiwen Sun, and Emma Pickwell-MacPherson, "The potential of terahertz imaging for cancer diagnosis: A review of investigations to date," Quantitative Imaging in Medicine and Surgery, Vol. 2, No. 1, 33-45, 2012.
doi:10.3978/j.issn.2223-4292.2012.01.04        Google Scholar

12. Cai, Y., I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, "Design and performance of singular electric field terahertz photoconducting antennas," Applied Physics Letters, Vol. 71, No. 15, 2076-2078, 1997.
doi:10.1063/1.119346        Google Scholar

13. Surdi, H., A. Singh, and S. S. Prabhu, "Enhancement of terahertz emission using AuGe nano-patterns," Proceedings of the 2013 COMSOL Conference in Bangalore, 2013.

14. Lewis, Roger, Photoconductive Antennas for Terahertz Applications, 2022.
doi:10.1002/9781119579182.ch20

15. Kumar, Ananth, "A review of design and analysis for various shaped antenna in terahertz and subterahertz applications," Turkish Journal of Computer and Mathematics Education, Vol. 12, No. 8, 2053-2071, 2021.        Google Scholar

16. Russakoff, G., "A derivation of the macroscopic Maxwell equations," American Journal of Physics, Vol. 38, No. 10, 1188-1195, 1970.
doi:10.1119/1.1976000        Google Scholar

17. Maier, Stefan A., Plasmonics: Fundamentals and Applications, Vol. 1, Springer, 2007.
doi:10.1007/0-387-37825-1

18. Indhu, A. R., L. Keerthana, and Gnanaprakash Dharmalingam, "Plasmonic nanotechnology for photothermal applications --- An evaluation," Beilstein Journal of Nanotechnology, Vol. 14, No. 1, 380-419, 2023.
doi:10.3762/bjnano.14.33        Google Scholar

19. Visser, Hubregt J., Antenna Theory and Applications, John Wiley & Sons, 2012.
doi:10.1002/9781119944751

20. Balanis, C. A., Modern Antenna Handbook, John Wiley & Sons, 2011.

21. Smith, P. R., D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE Journal of Quantum Electronics, Vol. 24, No. 2, 255-260, Feb. 1988.
doi:10.1109/3.121        Google Scholar

22. Park, S., K. Jin, J. Ye, and K. H. Jeong, "Nanoplasmonic photoconductive antenna for high power terahertz emission," 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 2498-2501, Beijing, China, 2011.
doi:10.1109/TRANSDUCERS.2011.5969751

23. Lai, Weien, Oday Mazin Abdulmunem, Pablo Del Pino, Beatriz Pelaz, Wolfgang J. Parak, Qian Zhang, and Huaiwu Zhang, "Enhanced terahertz radiation generation of photoconductive antennas based on manganese ferrite nanoparticles," Scientific Reports, Vol. 7, No. 1, 46261, 2017.
doi:10.1038/srep46261        Google Scholar

24. Bashirpour, Mohammad, Matin Forouzmehr, Seyed Ehsan Hosseininejad, Mohammadreza Kolahdouz, and Mohammad Neshat, "Improvement of terahertz photoconductive antenna using optical antenna array of ZnO nanorods," Scientific Reports, Vol. 9, No. 1, 1414, 2019.
doi:10.1038/s41598-019-38820-3        Google Scholar

25. Murakami, Hironaru, Tomoya Takarada, and Masayoshi Tonouchi, "Low-temperature GaAs-based plasmonic photoconductive terahertz detector with Au nano-islands," Photonics Research, Vol. 8, No. 9, 1448-1456, 2020.
doi:10.1364/prj.395517        Google Scholar

26. Arora, Nimisha, Aparajita Bandyopadhyay, and Amartya Sengupta, "Modeling and optimization of THz photoconductive antenna," COMSOL Multiphysics Conference, Bangalore, 2018.

27. De Vetter, Anna, Chao Song, Martin Mičica, Jerome Tignon, Juliette Mangeney, José Palomo, and Sukhdeep Dhillon, "Large area terahertz digitated photoconductive antennas based on a single high resistivity metal and nanoplasmonic electrode," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 59, 101248, 2024.
doi:10.1016/j.photonics.2024.101248        Google Scholar

28. Deumer, M., S. Nellen, S. Berrios, S. Breuer, S. Keyvaninia, L. Liebermeister, M. Schell, and R. B. Kohlhaas, "Advancing terahertz photomixers through the integration of photoconductive antennas with optical waveguides," APL Photonics, Vol. 10, No. 3, 036105, 2025.
doi:10.1063/5.0246801        Google Scholar

29. Chen, Yinwei, Feifei Qin, Lijuan Liu, Zeyu Zhao, Pu Li, Yuehui Sun, Wenjie Liu, and Yuncai Wang, "0.4 THz broadband terahertz noise source based on photoconductive antennas," Photonics, Vol. 12, No. 3, 252, 2025.
doi:10.3390/photonics12030252        Google Scholar

30. Bashirpour, M., S. Ghorbani, M. Kolahdouz, M. Neshat, M. Masnadi-Shirazi, and H. Aghababa, "Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure," RSC Advances, Vol. 7, No. 83, 53010-53017, 2017.
doi:10.1039/c7ra11398f        Google Scholar

31. Malhotra, Isha, Kumud Ranjan Jha, and G. Singh, "Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications," Optics Communications, Vol. 397, 129-139, 2017.
doi:10.1016/j.optcom.2017.04.008        Google Scholar

32. Martin, M. and E. R. Brown, "Critical comparison of GaAs and InGaAs THz photoconductors," Proceedings of SPIE, Vol. 8261, 826102, 2012.
doi:10.1117/12.914028

33. Kostakis, I., D. Saeedkia, and M. Missous, "Characterization of low temperature InGaAs-InAlAs semiconductor photo mixers at 1.55 μm wavelength illumination for terahertz generation and detection," Journal of Applied Physics, Vol. 111, No. 10, 103105, 2012.
doi:10.1063/1.4719052        Google Scholar

34. Baker, C., I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, "Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes," Applied Physics Letters, Vol. 85, No. 21, 4965-4967, 2004.
doi:10.1063/1.1824179        Google Scholar

35. Auston, D. H., K. P. Cheung, and P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Applied Physics Letters, Vol. 45, No. 3, 284-286, 1984.
doi:10.1063/1.95174        Google Scholar

36. Sze, S. M. and K. K. Ng, Physics of Semiconductor Devices, Wiley-Interscience, 2007.
doi:10.1002/0470068329

37. Taylor, Z. D., E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard, "Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0 W peak power," Optics Letters, Vol. 31, No. 11, 1729-1731, 2006.
doi:10.1364/ol.31.001729        Google Scholar

38. Gupta, S., J. F. Whitaker, and G. A. Mourou, "Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures," IEEE Journal of Quantum Electronics, Vol. 28, No. 10, 2464-2472, 1992.
doi:10.1109/3.159553        Google Scholar

39. Gupta, S., M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, "Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures," Applied Physics Letters, Vol. 59, No. 25, 3276-3278, 1991.
doi:10.1063/1.105729        Google Scholar

40. Khiabani, Neda, Modelling, design and characterisation of terahertz photoconductive antennas, The University of Liverpool (United Kingdom) , 2013.

41. Tani, Masahiko, Shuji Matsuura, Kiyomi Sakai, and Shin-ichi Nakashima, "Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs," Applied Optics, Vol. 36, No. 30, 7853-7859, 1997.
doi:10.1364/ao.36.007853        Google Scholar

42. Stone, M. R., M. Naftaly, R. E. Miles, J. R. Fletcher, and D. P. Steenson, "Electrical and radiation characteristics of semilarge photoconductive terahertz emitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 10, 2420-2429, 2004.
doi:10.1109/tmtt.2004.835980        Google Scholar

43. Stibal, R., J. Windscheif, and W. Jantz, "Contactless evaluation of semi-insulating GaAs wafer resistivity using the time-dependent charge measurement," Semiconductor Science and Technology, Vol. 6, No. 10, 995, 1991.
doi:10.1088/0268-1242/6/10/008        Google Scholar

44. Beard, Matthew C., Gordon M. Turner, and Charles A. Schmuttenmaer, "Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy," Journal of Applied Physics, Vol. 90, No. 12, 5915-5923, 2001.
doi:10.1063/1.1416140        Google Scholar

45. Smith, F. W., H. Q. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou, and T. Y. Hsiang, "Picosecond GaAs-based photoconductive optoelectronic detectors," Applied Physics Letters, Vol. 54, No. 10, 890-892, 1989.
doi:10.1063/1.100800        Google Scholar

46. Jo, Seong June, Soo-Ghang Ihn, Jong-In Song, Ki-Ju Yee, and Dong-Han Lee, "Carrier dynamics of low-temperature-grown InGaAs on GaAs using an InGaAlAs metamorphic buffer," Applied Physics Letters, Vol. 86, No. 11, 111903, 2005.
doi:10.1063/1.1872207        Google Scholar

47. Takazato, A., M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, "Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation," Applied Physics Letters, Vol. 91, No. 1, 011102, 2007.
doi:10.1063/1.2754370        Google Scholar

48. Johnson, P. B. and R.-W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, No. 12, 4370, 1972.
doi:10.1103/physrevb.6.4370        Google Scholar

49. Green, Martin A. and Mark J. Keevers, "Optical properties of intrinsic silicon at 300 K," Progress in Photovoltaics: Research and Applications, Vol. 3, No. 3, 189-192, 1995.
doi:10.1002/pip.4670030303        Google Scholar

50. Rosenblatt, Gilad, Boris Simkhovich, Guy Bartal, and Meir Orenstein, "Nonmodal plasmonics: Controlling the forced optical response of nanostructures," Physical Review X, Vol. 10, No. 1, 011071, 2020.
doi:10.1103/physrevx.10.011071        Google Scholar

51. Pratheep, R., S. S. Harish, Vaisshale Rathinasamy, et al. "Terahertz photoconductive antenna for sensing and imaging applications," 2024 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), 1-4, Chennai, India, 2024.
doi:10.1109/WiSPNET61464.2024.10532982