1. Farhad, Arshad and Jae-Young Pyun, "Terahertz meets AI: The state of the art," Sensors, Vol. 23, No. 11, 5034, 2023.
doi:10.3390/s23115034 Google Scholar
2. Jiang, Wei, Qiuheng Zhou, Jiguang He, Mohammad Asif Habibi, Sergiy Melnyk, Mohammed El-Absi, Bin Han, Marco Di Renzo, Hans Dieter Schotten, Fa-Long Luo, et al. "Terahertz communications and sensing for 6G and beyond: A comprehensive review," IEEE Communications Surveys & Tutorials, Vol. 26, No. 4, 2326-2381, 2024.
doi:10.1109/comst.2024.3385908 Google Scholar
3. Krozer, Viktor, Torsten Löffler, Jørgen Dall, Anders Kusk, Finn Eichhorn, Rasmus Kjelsmark Olsson, Jonas Due Buron, Peter Uhd Jepsen, Vitaliy Zhurbenko, and Thomas Jensen, "Terahertz imaging systems with aperture synthesis techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 7, 2027-2039, 2010.
doi:10.1109/tmtt.2010.2050246 Google Scholar
4. Armstrong, Carter M., "The truth about terahertz," IEEE Spectrum, Vol. 49, No. 9, 36-41, 2012.
doi:10.1109/mspec.2012.6281131 Google Scholar
5. Jha, Kumud Ranjan and G. Singh, "Terahertz planar antennas for future wireless communication: A technical review," Infrared Physics & Technology, Vol. 60, 71-80, 2013.
doi:10.1016/j.infrared.2013.03.009 Google Scholar
6. Liu, Jia, Wen-Hui Fan, Xu Chen, and Jun Xie, "Identification of high explosive RDX using terahertz imaging and spectral fingerprints," Journal of Physics: Conference Series, Vol. 680, No. 1, 012030, 2016.
doi:10.1088/1742-6596/680/1/012030
7. Kurmi, Yashwant and Vijayshri Chaurasia, "Hidden explosive detection systems for vehicle," International Journal of Computer Applications, Vol. 130, No. 10, 16-19, 2015.
doi:10.5120/ijca2015907080 Google Scholar
8. Skvortsov, L. A., "Standoff detection of hidden explosives and cold and fire arms by terahertz time-domain spectroscopy and active spectral imaging," Journal of Applied Spectroscopy, Vol. 81, No. 5, 725-749, 2014.
doi:10.1007/s10812-014-9998-2 Google Scholar
9. Piprek, Joachim, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, Academic Press, 2003.
10. Tani, Masahiko, Michael Herrmann, and Kiyomi Sakai, "Generation and detection of terahertzpulsed radiation with photoconductive antennas and its application toimaging," Measurement Science and Technology, Vol. 13, No. 11, 1739, 2002.
doi:10.1088/0957-0233/13/11/310 Google Scholar
11. Yu, Calvin, Shuting Fan, Yiwen Sun, and Emma Pickwell-MacPherson, "The potential of terahertz imaging for cancer diagnosis: A review of investigations to date," Quantitative Imaging in Medicine and Surgery, Vol. 2, No. 1, 33-45, 2012.
doi:10.3978/j.issn.2223-4292.2012.01.04 Google Scholar
12. Cai, Y., I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, "Design and performance of singular electric field terahertz photoconducting antennas," Applied Physics Letters, Vol. 71, No. 15, 2076-2078, 1997.
doi:10.1063/1.119346 Google Scholar
13. Surdi, H., A. Singh, and S. S. Prabhu, "Enhancement of terahertz emission using AuGe nano-patterns," Proceedings of the 2013 COMSOL Conference in Bangalore, 2013.
14. Lewis, Roger, Photoconductive Antennas for Terahertz Applications, 2022.
doi:10.1002/9781119579182.ch20
15. Kumar, Ananth, "A review of design and analysis for various shaped antenna in terahertz and subterahertz applications," Turkish Journal of Computer and Mathematics Education, Vol. 12, No. 8, 2053-2071, 2021. Google Scholar
16. Russakoff, G., "A derivation of the macroscopic Maxwell equations," American Journal of Physics, Vol. 38, No. 10, 1188-1195, 1970.
doi:10.1119/1.1976000 Google Scholar
17. Maier, Stefan A., Plasmonics: Fundamentals and Applications, Vol. 1, Springer, 2007.
doi:10.1007/0-387-37825-1
18. Indhu, A. R., L. Keerthana, and Gnanaprakash Dharmalingam, "Plasmonic nanotechnology for photothermal applications --- An evaluation," Beilstein Journal of Nanotechnology, Vol. 14, No. 1, 380-419, 2023.
doi:10.3762/bjnano.14.33 Google Scholar
19. Visser, Hubregt J., Antenna Theory and Applications, John Wiley & Sons, 2012.
doi:10.1002/9781119944751
20. Balanis, C. A., Modern Antenna Handbook, John Wiley & Sons, 2011.
21. Smith, P. R., D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE Journal of Quantum Electronics, Vol. 24, No. 2, 255-260, Feb. 1988.
doi:10.1109/3.121 Google Scholar
22. Park, S., K. Jin, J. Ye, and K. H. Jeong, "Nanoplasmonic photoconductive antenna for high power terahertz emission," 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 2498-2501, Beijing, China, 2011.
doi:10.1109/TRANSDUCERS.2011.5969751
23. Lai, Weien, Oday Mazin Abdulmunem, Pablo Del Pino, Beatriz Pelaz, Wolfgang J. Parak, Qian Zhang, and Huaiwu Zhang, "Enhanced terahertz radiation generation of photoconductive antennas based on manganese ferrite nanoparticles," Scientific Reports, Vol. 7, No. 1, 46261, 2017.
doi:10.1038/srep46261 Google Scholar
24. Bashirpour, Mohammad, Matin Forouzmehr, Seyed Ehsan Hosseininejad, Mohammadreza Kolahdouz, and Mohammad Neshat, "Improvement of terahertz photoconductive antenna using optical antenna array of ZnO nanorods," Scientific Reports, Vol. 9, No. 1, 1414, 2019.
doi:10.1038/s41598-019-38820-3 Google Scholar
25. Murakami, Hironaru, Tomoya Takarada, and Masayoshi Tonouchi, "Low-temperature GaAs-based plasmonic photoconductive terahertz detector with Au nano-islands," Photonics Research, Vol. 8, No. 9, 1448-1456, 2020.
doi:10.1364/prj.395517 Google Scholar
26. Arora, Nimisha, Aparajita Bandyopadhyay, and Amartya Sengupta, "Modeling and optimization of THz photoconductive antenna," COMSOL Multiphysics Conference, Bangalore, 2018.
27. De Vetter, Anna, Chao Song, Martin Mičica, Jerome Tignon, Juliette Mangeney, José Palomo, and Sukhdeep Dhillon, "Large area terahertz digitated photoconductive antennas based on a single high resistivity metal and nanoplasmonic electrode," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 59, 101248, 2024.
doi:10.1016/j.photonics.2024.101248 Google Scholar
28. Deumer, M., S. Nellen, S. Berrios, S. Breuer, S. Keyvaninia, L. Liebermeister, M. Schell, and R. B. Kohlhaas, "Advancing terahertz photomixers through the integration of photoconductive antennas with optical waveguides," APL Photonics, Vol. 10, No. 3, 036105, 2025.
doi:10.1063/5.0246801 Google Scholar
29. Chen, Yinwei, Feifei Qin, Lijuan Liu, Zeyu Zhao, Pu Li, Yuehui Sun, Wenjie Liu, and Yuncai Wang, "0.4 THz broadband terahertz noise source based on photoconductive antennas," Photonics, Vol. 12, No. 3, 252, 2025.
doi:10.3390/photonics12030252 Google Scholar
30. Bashirpour, M., S. Ghorbani, M. Kolahdouz, M. Neshat, M. Masnadi-Shirazi, and H. Aghababa, "Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure," RSC Advances, Vol. 7, No. 83, 53010-53017, 2017.
doi:10.1039/c7ra11398f Google Scholar
31. Malhotra, Isha, Kumud Ranjan Jha, and G. Singh, "Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications," Optics Communications, Vol. 397, 129-139, 2017.
doi:10.1016/j.optcom.2017.04.008 Google Scholar
32. Martin, M. and E. R. Brown, "Critical comparison of GaAs and InGaAs THz photoconductors," Proceedings of SPIE, Vol. 8261, 826102, 2012.
doi:10.1117/12.914028
33. Kostakis, I., D. Saeedkia, and M. Missous, "Characterization of low temperature InGaAs-InAlAs semiconductor photo mixers at 1.55 μm wavelength illumination for terahertz generation and detection," Journal of Applied Physics, Vol. 111, No. 10, 103105, 2012.
doi:10.1063/1.4719052 Google Scholar
34. Baker, C., I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, "Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes," Applied Physics Letters, Vol. 85, No. 21, 4965-4967, 2004.
doi:10.1063/1.1824179 Google Scholar
35. Auston, D. H., K. P. Cheung, and P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Applied Physics Letters, Vol. 45, No. 3, 284-286, 1984.
doi:10.1063/1.95174 Google Scholar
36. Sze, S. M. and K. K. Ng, Physics of Semiconductor Devices, Wiley-Interscience, 2007.
doi:10.1002/0470068329
37. Taylor, Z. D., E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard, "Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0 W peak power," Optics Letters, Vol. 31, No. 11, 1729-1731, 2006.
doi:10.1364/ol.31.001729 Google Scholar
38. Gupta, S., J. F. Whitaker, and G. A. Mourou, "Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures," IEEE Journal of Quantum Electronics, Vol. 28, No. 10, 2464-2472, 1992.
doi:10.1109/3.159553 Google Scholar
39. Gupta, S., M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, "Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures," Applied Physics Letters, Vol. 59, No. 25, 3276-3278, 1991.
doi:10.1063/1.105729 Google Scholar
40. Khiabani, Neda, Modelling, design and characterisation of terahertz photoconductive antennas, The University of Liverpool (United Kingdom) , 2013.
41. Tani, Masahiko, Shuji Matsuura, Kiyomi Sakai, and Shin-ichi Nakashima, "Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs," Applied Optics, Vol. 36, No. 30, 7853-7859, 1997.
doi:10.1364/ao.36.007853 Google Scholar
42. Stone, M. R., M. Naftaly, R. E. Miles, J. R. Fletcher, and D. P. Steenson, "Electrical and radiation characteristics of semilarge photoconductive terahertz emitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 10, 2420-2429, 2004.
doi:10.1109/tmtt.2004.835980 Google Scholar
43. Stibal, R., J. Windscheif, and W. Jantz, "Contactless evaluation of semi-insulating GaAs wafer resistivity using the time-dependent charge measurement," Semiconductor Science and Technology, Vol. 6, No. 10, 995, 1991.
doi:10.1088/0268-1242/6/10/008 Google Scholar
44. Beard, Matthew C., Gordon M. Turner, and Charles A. Schmuttenmaer, "Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy," Journal of Applied Physics, Vol. 90, No. 12, 5915-5923, 2001.
doi:10.1063/1.1416140 Google Scholar
45. Smith, F. W., H. Q. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou, and T. Y. Hsiang, "Picosecond GaAs-based photoconductive optoelectronic detectors," Applied Physics Letters, Vol. 54, No. 10, 890-892, 1989.
doi:10.1063/1.100800 Google Scholar
46. Jo, Seong June, Soo-Ghang Ihn, Jong-In Song, Ki-Ju Yee, and Dong-Han Lee, "Carrier dynamics of low-temperature-grown InGaAs on GaAs using an InGaAlAs metamorphic buffer," Applied Physics Letters, Vol. 86, No. 11, 111903, 2005.
doi:10.1063/1.1872207 Google Scholar
47. Takazato, A., M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, "Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation," Applied Physics Letters, Vol. 91, No. 1, 011102, 2007.
doi:10.1063/1.2754370 Google Scholar
48. Johnson, P. B. and R.-W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, No. 12, 4370, 1972.
doi:10.1103/physrevb.6.4370 Google Scholar
49. Green, Martin A. and Mark J. Keevers, "Optical properties of intrinsic silicon at 300 K," Progress in Photovoltaics: Research and Applications, Vol. 3, No. 3, 189-192, 1995.
doi:10.1002/pip.4670030303 Google Scholar
50. Rosenblatt, Gilad, Boris Simkhovich, Guy Bartal, and Meir Orenstein, "Nonmodal plasmonics: Controlling the forced optical response of nanostructures," Physical Review X, Vol. 10, No. 1, 011071, 2020.
doi:10.1103/physrevx.10.011071 Google Scholar
51. Pratheep, R., S. S. Harish, Vaisshale Rathinasamy, et al. "Terahertz photoconductive antenna for sensing and imaging applications," 2024 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), 1-4, Chennai, India, 2024.
doi:10.1109/WiSPNET61464.2024.10532982