Vol. 163
Latest Volume
All Volumes
PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-23
A Deadbeat Predictive Current Vector Control Algorithm for Improving Current Control Performance of Stepper Motors
By
Progress In Electromagnetics Research C, Vol. 163, 277-284, 2026
Abstract
To address the issues of step loss, control lag, and low precision in open-loop hybrid stepper motors applied in economical CNC machine tools, a deadbeat predictive current field oriented control method (DPCFOC) is proposed. First, the research progress of hybrid stepper motor vector control is systematically reviewed, analyzing the advantages and limitations of existing schemes in error compensation, model construction, and algorithm implementation. Subsequently, the continuous mathematical model of the hybrid stepper motor in the rotating coordinate system is established, and the discrete deadbeat predictive model and current prediction equation are derived using the first-order forward Euler method. On this basis, a deadbeat vector control algorithm is proposed. Compared with the traditional dual-closed-loop vector control with PI regulators, the algorithm predicts the next-step current through the motor model and calculates the optimal reference voltage vector in advance to eliminate current error, thereby improving dynamic response speed. Stability analysis via Z-transformation reveals that the system remains stable when the model inductance parameter is within 0-2 times the actual inductance. For the two-phase hybrid stepper motor, a space vector pulse width modulation (SVPWM) strategy based on a dual H-bridge inverter is designed, using 4 non-zero vectors and 2 zero vectors to synthesize the desired voltage vector. Finally, an experimental platform is built with a TMS320F28335 controller and a 57CME22A closed-loop stepper motor to verify the algorithm. This study provides a feasible solution for improving the control precision and dynamic performance of hybrid stepper motors in economical CNC machine tools.
Citation
Jianmin Ma, and Kexin Ma, "A Deadbeat Predictive Current Vector Control Algorithm for Improving Current Control Performance of Stepper Motors," Progress In Electromagnetics Research C, Vol. 163, 277-284, 2026.
doi:10.2528/PIERC25101602
References

1. Liu, Xin, Yanfei Pan, Yilin Zhu, Hui Han, and Lei Ji, "Decoupling control of permanent magnet synchronous motor based on parameter identification of fuzzy least square method," Progress In Electromagnetics Research M, Vol. 103, 49-60, 2021.
doi:10.2528/pierm21032601

2. Zhu, Lidong, Ben Xu, and Huangqiu Zhu, "Interior permanent magnet synchronous motor dead-time compensation combined with extended Kalman and neural network bandpass filter," Progress In Electromagnetics Research M, Vol. 98, 193-203, 2020.
doi:10.2528/pierm20100903

3. Zhou, Chuyao and Bin Liu, "A hybrid stepper motor control solution based on a low-cost position sensor," 2019 IEEE International Conference on Mechatronics and Automation (ICMA), 1836-1841, Tianjin, China, 2019.
doi:10.1109/ICMA.2019.8816190

4. Lee, Youngwoo, Donghoon Shin, Wonhee Kim, and Chung Choo Chung, "Nonlinear H2 control for a nonlinear system with bounded varying parameters: Application to PM stepper motors," IEEE/ASME Transactions on Mechatronics, Vol. 22, No. 3, 1349-1359, 2017.
doi:10.1109/TMECH.2017.2686901

5. Lai, Chiu-Keng, Jhang-Shan Ciou, and Chia-Che Tsai, "FPGA-based stepper motor vector control system design," 2017 International Automatic Control Conference (CACS), 1-5, Pingtung, Taiwan, 2017.
doi:10.1109/CACS.2017.8284269

6. Kim, Wonhee, Donghoon Shin, and Chung Choo Chung, "Microstepping with nonlinear torque modulation for permanent magnet stepper motors," IEEE Transactions on Control Systems Technology, Vol. 21, No. 5, 1971-1979, 2013.
doi:10.1109/tcst.2012.2211079

7. Sarr, Marie Pascaline, Mouhamadou Falilou Ndiaye, Biram Dieng, and Ababacar Thiam, "Field oriented control of stepper motors for a mini heliostat tracking," 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA, 104-109, Tripoli, Libya, 2021.
doi:10.1109/MI-STA52233.2021.9464388

8. Jeong, Yong Woo, Youngwoo Lee, and Chung Choo Chung, "A survey of advanced control methods for permanent magnet stepper motors," Journal of Marine Science and Technology, Vol. 28, No. 5, 2, 2020.
doi:10.6119/JMST.202010_28(5).0002

9. Ricci, Stefano and Valentino Meacci, "Simple torque control method for hybrid stepper motors implemented in FPGA," Electronics, Vol. 7, No. 10, 242, 2018.
doi:10.3390/electronics7100242

10. Bernardi, Fabio, Emilio Carfagna, Giovanni Migliazza, Giampaolo Buticchi, Fabio Immovilli, and Emilio Lorenzani, "Performance analysis of current control strategies for hybrid stepper motors," IEEE Open Journal of the Industrial Electronics Society, Vol. 3, 460-472, 2022.
doi:10.1109/ojies.2022.3185659

11. Li, Caijie, Shengchang Tang, Mengchuang Yin, Xuan Zhao, and Hui You, "Enhancing position tracking of hybrid stepper motors using lyapunov-based current controllers," Electronics, Vol. 14, No. 10, 1997, 2025.
doi:10.3390/electronics14101997

12. Paul, Mr. Jijo and Dominic Mathew, "A novel vector control strategy for bipolar stepper motor," International Journal of Scientific & Engineering Research, Vol. 5, No. 7, 2014.

13. Lixian, Song and Wan Rahiman, "A compound control for hybrid stepper motor based on PI and sliding mode control," IEEE Access, Vol. 12, 163536-163550, 2024.
doi:10.1109/access.2024.3490793

14. Skuric, Antun, Hasan Sinan Bank, Richard Unger, Owen Williams, and David González-Reyes, "SimpleFOC: A field oriented control (FOC) library for controlling brushless direct current (BLDC) and stepper motors," Journal of Open Source Software, Vol. 7, No. 74, 4232, 2022.
doi:10.21105/joss.04232

15. Rahmatullah, Rohullah, Ayca Ak, and Necibe Fusun Oyman Serteller, "Design of sliding mode control using SVPWM modulation method for speed control of induction motor," Transportation Research Procedia, Vol. 70, 226-233, 2023.
doi:10.1016/j.trpro.2023.11.023