Vol. 163
Latest Volume
All Volumes
PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-19
Unbalance Vibration Compensation Control of Permanent Magnet Assisted Bearingless Synchronous Reluctance Motor Based on LMS Filter Algorithm Optimized by BPNN
By
Progress In Electromagnetics Research C, Vol. 163, 198-209, 2026
Abstract
To address the rotor vibration induced by rotor unbalance in a permanent magnet assisted bearingless synchronous reluctance motor (PMa-BSynRM), a feedforward compensation control method based on the Least Mean Squares (LMS) adaptive filtering algorithm, optimized by a Back Propagation Neural Network (BPNN), is proposed. Firstly, the operating principle of the PMa-BSynRM is introduced, and the mechanism of rotor unbalance vibration is analyzed. Secondly, a feedforward compensation controller is developed to extract the vibration signal and suppress rotor vibration. The BPNN is employed to adaptively adjust the LMS step size, thereby enhancing convergence speed, accuracy, and anti-interference capability. Furthermore, to overcome the inherent limitations of the BPNN, a hybrid optimization strategy that integrates particle swarm optimization (PSO) with an improved genetic algorithm (IGA) is adopted to optimize the initial weights and thresholds of the BPNN. Finally, a rotor unbalance vibration compensation control system for the PMa-BSynRM is established. Simulation and experimental results verify that the proposed control algorithm effectively reduces radial displacement and suppresses unbalanced vibration, while also exhibiting strong anti-interference performance and robustness.
Citation
Tianliang Du, and Huangqiu Zhu, "Unbalance Vibration Compensation Control of Permanent Magnet Assisted Bearingless Synchronous Reluctance Motor Based on LMS Filter Algorithm Optimized by BPNN," Progress In Electromagnetics Research C, Vol. 163, 198-209, 2026.
doi:10.2528/PIERC25102102
References

1. Mao, Bo and Huangqiu Zhu, "Unbalance vibration suppression control of PMa-BSynRM based on total least square adaptive filtering algorithm," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 11, No. 6, 5798-5808, Dec. 2023.
doi:10.1109/jestpe.2023.3326463

2. Gao, Yasen, Daihong Jiang, Huangqiu Zhu, Bo Mao, and Yichen Liu, "Design optimization of asymmetric permanent magnet assisted bearingless synchronous reluctance motor," IEEE Transactions on Energy Conversion, Vol. 40, No. 2, 1644-1654, Jun. 2025.
doi:10.1109/tec.2024.3505844

3. Setiawan, J. D., R. Mukherjee, and E. H. Maslen, "Synchronous disturbance compensation in active magnetic bearings using bias current excitation," 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Proceedings (Cat. No. 01TH8556), Vol. 2, 707-712, Como, Italy, Jul. 2001.
doi:10.1109/AIM.2001.936753

4. Shafai, B., S. Beale, P. LaRocca, and E. Cusson, "Magnetic bearing control systems and adaptive forced balancing," IEEE Control Systems Magazine, Vol. 14, No. 2, 4-13, Apr. 1994.
doi:10.1109/37.272775

5. Peng, Cong, Mengting Zhu, Kun Wang, Yuan Ren, and Zhiquan Deng, "A two-stage synchronous vibration control for magnetically suspended rotor system in the full speed range," IEEE Transactions on Industrial Electronics, Vol. 67, No. 1, 480-489, Jan. 2020.
doi:10.1109/tie.2018.2890498

6. Herzog, R., P. Buhler, C. Gahler, and R. Larsonneur, "Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings," IEEE Transactions on Control Systems Technology, Vol. 4, No. 5, 580-586, Sep. 1996.
doi:10.1109/87.531924

7. Schuhmann, Thomas, Wilfried Hofmann, and Ralf Werner, "Improving operational performance of active magnetic bearings using Kalman filter and state feedback control," IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, 821-829, Feb. 2012.
doi:10.1109/tie.2011.2161056

8. Gong, Lei and Changsheng Zhu, "Synchronous vibration control for magnetically suspended rotor system using a variable angle compensation algorithm," IEEE Transactions on Industrial Electronics, Vol. 68, No. 8, 6547-6559, Aug. 2021.
doi:10.1109/tie.2020.3003632

9. Chen, Kuan-Yu, Pi-Cheng Tung, Mong-Tao Tsai, and Yi-Hua Fan, "A self-tuning fuzzy PID-type controller design for unbalance compensation in an active magnetic bearing," Expert Systems with Applications, Vol. 36, No. 4, 8560-8570, May 2009.
doi:10.1016/j.eswa.2008.10.055

10. Mao, Chuan and Changsheng Zhu, "Unbalance compensation for active magnetic bearing rotor system using a variable step size real-time iterative seeking algorithm," IEEE Transactions on Industrial Electronics, Vol. 65, No. 5, 4177-4186, May 2018.
doi:10.1109/tie.2017.2772144

11. Jiang, Kejian, Changsheng Zhu, and Liangliang Chen, "Unbalance compensation by recursive seeking unbalance mass position in active magnetic bearing-rotor system," IEEE Transactions on Industrial Electronics, Vol. 62, No. 9, 5655-5664, Sep. 2015.
doi:10.1109/tie.2015.2405893

12. Tiwari, Rajiv and Avinash Chougale, "Identification of bearing dynamic parameters and unbalance states in a flexible rotor system fully levitated on active magnetic bearings," Mechatronics, Vol. 24, No. 3, 274-286, Apr. 2014.
doi:10.1016/j.mechatronics.2014.02.010

13. Mao, Chuan and Changsheng Zhu, "Vibration control for active magnetic bearing rotor system of high-speed flywheel energy storage system in a wide range of speed," 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), 1-6, Hangzhou, China, Oct. 2016.
doi:10.1109/VPPC.2016.7791811

14. Shi, Jiaming and Huangqiu Zhu, "Control study for compensating rotor vibration of four-DOF six-pole hybrid magnetic bearings based on variable step size LMS algorithm," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 11, No. 2, 1616-1626, Apr. 2023.
doi:10.1109/jestpe.2022.3222656

15. Kumar, Krishna, Rajlaxmi Pandey, Sanjay Singh Bora, and Nithin V. George, "A robust family of algorithms for adaptive filtering based on the arctangent framework," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 3, 1967-1971, Mar. 2022.
doi:10.1109/tcsii.2021.3129536

16. Zhu, Huangqiu and Yijian Shi, "Displacement self-sensing control of permanent magnet assisted bearingless synchronous reluctance motor based on least square support vector machine optimized by improved NSGA-II," IEEE Transactions on Industrial Electronics, Vol. 71, No. 2, 1201-1211, Feb. 2024.
doi:10.1109/tie.2023.3262868

17. Zhu, Huimin, Zebin Yang, Xiaodong Sun, Ding Wang, and Xi Chen, "Rotor vibration control of a bearingless induction motor based on unbalanced force feed-forward compensation and current compensation," IEEE Access, Vol. 8, 12988-12998, 2020.
doi:10.1109/access.2020.2964106

18. Memon, Mudasir Ahmed, Marif Daula Siddique, Saad Mekhilef, and Marizan Mubin, "Asynchronous particle swarm optimization-genetic algorithm (APSO-GA) based selective harmonic elimination in a cascaded H-bridge multilevel inverter," IEEE Transactions on Industrial Electronics, Vol. 69, No. 2, 1477-1487, Feb. 2022.
doi:10.1109/tie.2021.3060645

19. Xu, Ben, Huangqiu Zhu, and Xin Wang, "Decoupling control of outer rotor coreless bearingless permanent magnet synchronous motor based on least squares support vector machine generalized inverse optimized by improved genetic algorithm," IEEE Transactions on Industrial Electronics, Vol. 69, No. 12, 12182-12190, Dec. 2022.
doi:10.1109/tie.2021.3130345