Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-02
Enhanced Impedance Matching in Microstrip Grid Array Antenna Using Differential-Shifted Feeding and Parasitic Patches
By
Progress In Electromagnetics Research C, Vol. 164, 96-104, 2026
Abstract
This paper aims to design and analyze a tri-band Differential Shifted-Feed Microstrip Grid Array Antenna (DSF-MGAA) with eight parasitic elements to achieve better return loss and isolation characteristics and improved antenna gain at various frequency ranges in the Golden band, X-band and Ku band. The non-uniform grid element is excited through two 180-degree out-of-phase signal-carrying feed lines with the LC matching network to provide better impedance matching. The antenna provides a minimum peak return loss of -17.88 dB, -27.13 dB and -26.7 dB at 7 GHz, 9 GHz and 12.2 GHz. Measured results show a good agreement with the simulated results. Parasitic elements incorporated provide a maximum gain of 17.2 dBi. The results confirm that the proposed antenna suits for high-frequency applications such as 6G communication, Space and Defense application and VSAT (Very Small Aperture Terminal) networks.
Citation
Rajamohan Varun Prakash, Jeyagobi Logeswaran, Atham Mohamed Mahin Ayas, and Pandurangan Sridhar, "Enhanced Impedance Matching in Microstrip Grid Array Antenna Using Differential-Shifted Feeding and Parasitic Patches," Progress In Electromagnetics Research C, Vol. 164, 96-104, 2026.
doi:10.2528/PIERC25102801
References

1. Xu, Guanghui, Hong-Li Peng, Zijian Shao, Liang Zhou, Yueping Zhang, and Wen-Yan Yin, "Dual-band differential shifted-feed microstrip grid array antenna with two parasitic patches," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 2434-2439, Mar. 2020.
doi:10.1109/tap.2019.2943409        Google Scholar

2. Lang, Yi-Lin, Da Yi, and Ming-Chun Tang, "Single-layer and wideband filtering antenna with small footprint based on non-uniform grid array," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 9, 7287-7292, Sep. 2024.
doi:10.1109/tap.2024.3413569        Google Scholar

3. Zhao, Binshan, Min Tang, Zijian Shao, Yueping Zhang, and Junfa Mao, "Design of broadband compact grid array antennas using gradient slow-wave structures," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 3, 620-624, Mar. 2022.
doi:10.1109/lawp.2022.3140402        Google Scholar

4. Tran, Huy Hung and Nghia Nguyen-Trong, "Performance enhancement of MIMO patch antenna using parasitic elements," IEEE Access, Vol. 9, 30011-30016, Feb. 2021.
doi:10.1109/access.2021.3058340        Google Scholar

5. Chen, Xiaomin, Junlin Wang, and Le Chang, "Extremely low-profile dual-band microstrip patch antenna using electric coupling for 5G mobile terminal applications," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 2, 1895-1900, Feb. 2023.
doi:10.1109/tap.2022.3217640        Google Scholar

6. Ren, Jian, Miaomiao Zuo, Bing Zhang, Xiaoyu Du, Zhe Chen, Ying Liu, and Ying Zeng Yin, "Large frequency ratio Vivaldi antenna system with low-frequency gain enhancement utilizing dual-function taper slot," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4854-4859, Jun. 2022.
doi:10.1109/tap.2021.3137463        Google Scholar

7. Chen, Chunling, "A wideband coplanar L-probe-fed slot-loaded rectangular filtering microstrip patch antenna with high selectivity," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 6, 1134-1138, Jun. 2022.
doi:10.1109/lawp.2022.3159230        Google Scholar

8. Guo, Yu Qing, Yong Mei Pan, Shao Yong Zheng, and Kai Lu, "A singly-fed dual-band microstrip antenna for microwave and millimeter-wave applications in 5G wireless communication," IEEE Transactions on Vehicular Technology, Vol. 70, No. 6, 5419-5430, Jun. 2021.
doi:10.1109/tvt.2021.3070807        Google Scholar

9. Xu, Guanghui, Li-Xia Yang, Zhi-Xiang Huang, Wei Wang, Hong-Li Peng, Yueping Zhang, and Wen-Yan Yin, "Microstrip grid and patch-based dual-band shared-aperture differentially fed array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 6, 1043-1047, Jun. 2021.
doi:10.1109/lawp.2021.3070219        Google Scholar

10. Hu, Kun-Zhi, Ming-Chun Tang, Dajiang Li, Yang Wang, and Mei Li, "Design of compact, single-layered substrate integrated waveguide filtenna with parasitic patch," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 1134-1139, Feb. 2020.
doi:10.1109/tap.2019.2938574        Google Scholar

11. Lin, Qingli, Ming-Chun Tang, Xiaoming Chen, Da Yi, Mei Li, and Richard W. Ziolkowski, "Low-profile, electrically small, ultrawideband antenna enabled with an inductive grid array metasurface," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 8, 7152-7157, Aug. 2022.
doi:10.1109/tap.2022.3145459        Google Scholar

12. Lin, Qingli, Ming-Chun Tang, Mei Li, and Richard W. Ziolkowski, "Electrically small, wideband, circularly polarized, inductive grid-array metasurface antenna," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 5, 4546-4551, May 2023.
doi:10.1109/tap.2023.3259800        Google Scholar

13. Li, Dajiang, Ming-Chun Tang, Yang Wang, Kun-Zhi Hu, and Richard W. Ziolkowski, "Dual-band, differentially-fed filtenna with wide bandwidth, high selectivity, and low cross-polarization," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4872-4877, Jun. 2022.
doi:10.1109/tap.2021.3138505        Google Scholar

14. Srivastava, Sumit and N. S. Rajput, "Wide band microstrip patch antenna array with parasitic element for automotive radar applications," 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), 1-3, Gran Canaria, Spain, 2022.
doi:10.23919/AT-AP-RASC54737.2022.9814212

15. Wang, Meng, Yu-Hui Ren, Xue-Yu Jin, Ying-Ying Wang, Han-Dong Wu, and Ke-Li, "Design of a broadband miniaturized microstrip grid array antenna with slow wave transmission lines," 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Harbin, China, 2022.
doi:10.1109/ICMMT55580.2022.10023186

16. Yang, Mingyue, Qiang Wu, Kuisong Zheng, Shitian Zhang, and Gao Wei, "Radiation field distribution above sea surface of underwater microstrip antenna array," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 2, 858-862, Feb. 2024.
doi:10.1109/lawp.2023.3337425        Google Scholar

17. Xu, Guanghui, Li-Xia Yang, Zhi-Xiang Huang, Wei Wang, Hong-Li Peng, Yueping Zhang, and Wen-Yan Yin, "Microstrip grid and patch-based dual-band shared-aperture differentially fed array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 6, 1043-1047, Jun. 2021.
doi:10.1109/lawp.2021.3070219        Google Scholar

18. An, Kang, Peng Sun, Yueguang Deng, and Aixin Chen, "A large-scale high-gain transparent grid array antenna for millimeter-wave communication," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 5, 1598-1602, May 2024.
doi:10.1109/lawp.2024.3363627        Google Scholar

19. Arnieri, Emilio, Francesco Greco, Luigi Boccia, and Giandomenico Amendola, "A reduced size planar grid array antenna for automotive radar sensors," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2389-2393, Dec. 2018.
doi:10.1109/lawp.2018.2876150        Google Scholar

20. Arrawatia, Mahima, Maryam Shojaei Baghini, and Girish Kumar, "Differential microstrip antenna for RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1581-1588, Apr. 2015.
doi:10.1109/tap.2015.2399939        Google Scholar

21. Logeswaran, Jeyagobi and Rajasekar Boopathi Rani, "Design and analysis of miniaturized asymmetric CPW-fed 5.8 GHz antenna for RFID applications," National Academy Science Letters, Vol. 47, No. 5, 551-554, 2024.
doi:10.1007/s40009-024-01397-1        Google Scholar

22. Nasimuddin, Yijun Zhou, and Xianming Qing, "Millimeter-wave switched-beam grid-array antenna," 2023 17th European Conference on Antennas and Propagation (EuCAP), 1-4, Florence, Italy, 2023.
doi:10.23919/EuCAP57121.2023.10133782

23. Nasimuddin and Xianming Qing, "Switchable beam steering antenna for Ka-band airborne applications," 2020 IEEE International Conference on Computational Electromagnetics (ICCEM), 201-202, Singapore, 2020.
doi:10.1109/ICCEM47450.2020.9219443

24. Sun, Mei, Nasimuddin, Xianming Qing, and Z. N. Chen, "Circularly polarized switched beams grid array antenna for mm-Wave systems," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 1598-1600, Singapore, 2019.
doi:10.1109/APMC46564.2019.9038805