Vol. 163
Latest Volume
All Volumes
PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-23
Optimization and Cost Analysis of Fractional Slot Less Rare Earth Combined Magnetic Poles Permanent Magnet Synchronous Motor
By
Progress In Electromagnetics Research C, Vol. 163, 263-276, 2026
Abstract
Rare-earth permanent magnet motors are widely used in industrial and civil applications due to their advantages of high efficiency, energy saving, simple structure, etc. However, its development is hindered by escalating raw material costs. The current research focuses on developing high-performance and cost-effective permanent magnet motors with less rare earth. To reduce the large cogging torque of the integer slot 4-pole 36-slot less rare earth combined magnetic poles permanent magnetic synchronous motor (LREH-PMSM), a fractional slot 4-pole 30-slot LREH-PMSM is proposed and optimized. The motor and its parameters are designed, simulated, and analyzed by the finite element method. The effects of these parameters are analyzed on motor torque, torque ripple, efficiency, and material cost. The fractional slot 4-pole 30-slot LREH-PMSM can effectively reduce the cogging torque compared with the integer slot 4-pole 36-slot LREH-PMSM, and its value decreased by 88.28%. Compared with traditional rare-earth permanent magnet synchronous motor (PMSM), it not only has small cogging torque, but also lowers the reliance on rare-earth permanent magnet materials, which in turn lowers the material cost of the motor.
Citation
Zongyao Li, Chunyan Li, and Yue Wang, "Optimization and Cost Analysis of Fractional Slot Less Rare Earth Combined Magnetic Poles Permanent Magnet Synchronous Motor," Progress In Electromagnetics Research C, Vol. 163, 263-276, 2026.
doi:10.2528/PIERC25103005
References

1. Zhang, Ke, Yuanyang Qi, Bin Le, and Zhan Feng, "Design and experimental study of water cooling system for external rotor permanent magnet synchronous motor," IEEE Access, Vol. 12, 88034-88047, 2024.
doi:10.1109/access.2024.3418017

2. Madonna, Vincenzo, Paolo Giangrande, Luca Lusuardi, Andrea Cavallini, Chris Gerada, and Michael Galea, "Thermal overload and insulation aging of short duty cycle, aerospace motors," IEEE Transactions on Industrial Electronics, Vol. 67, No. 4, 2618-2629, 2020.
doi:10.1109/tie.2019.2914630

3. Ibatullin, Eduard and Timur Petrov, "Current trends in modernization of stator design of permanent magnet synchronous motors," 2024 International Ural Conference on Electrical Power Engineering (UralCon), 214-219, Magnitogorsk, Russian Federation, 2024.
doi:10.1109/UralCon62137.2024.10718932

4. Brody, Ryan M., Paul R. Ohodnicki, Mohendro K. Ghosh, Cuauhtemoc Macias, Andrew Sherman, Ahmed Talaat, Jun Cui, and Brandon Grainger, "Trade study for rare-earth-free interior permanent magnet synchronous machine using MnBi permanent magnets," IEEE Transactions on Industry Applications, Vol. 60, No. 4, 6010-6022, 2024.
doi:10.1109/tia.2024.3379487

5. Zhu, Xiaoyong, Sipeng Li, Shiyue Zheng, Li Quan, Deyang Fan, Xianxian Zeng, and Christopher H. T. Lee, "Torque component redistribution and enhancement for hybrid permanent magnet motor with permanent magnet offset placement," IEEE Transactions on Transportation Electrification, Vol. 9, No. 1, 631-641, 2023.
doi:10.1109/tte.2022.3177745

6. Li, Ya, Hui Yang, Heyun Lin, Shichuan Ding, Jun Hang, and Wei Li, "Influences of magnet arrangements on air-gap field modulation effects in interior consequent-pole PM machines," IEEE Transactions on Transportation Electrification, Vol. 9, No. 1, 819-832, 2023.
doi:10.1109/tte.2022.3202090

7. Chen, Yunyun, Tongle Cai, Xiaoyong Zhu, Deyang Fan, and Qianlong Wang, "Analysis and design of a new type of less-rare-earth hybrid-magnet motor with different rotor topologies," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, 1-6, 2020.
doi:10.1109/tasc.2020.2965879

8. Zhu, Xiaoyong, Weiqiang Wu, Li Quan, Zixuan Xiang, and Weiwei Gu, "Design and multi-objective stratified optimization of a less-rare-earth hybrid permanent magnets motor with high torque density and low cost," IEEE Transactions on Energy Conversion, Vol. 34, No. 3, 1178-1189, 2019.
doi:10.1109/tec.2018.2886316

9. Rao, Jing, Yuting Gao, Dawei Li, and Ronghai Qu, "Performance analysis of interior permanent magnet motor using overlapping windings with fractional ratio of slot to pole pair," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 7, 1-5, 2016.
doi:10.1109/tasc.2016.2599206

10. Guo, Liyan, Jiaqi Xu, Shuang Wu, Ximing Xie, and Huimin Wang, "Analysis and design of dual three-phase fractional-slot permanent magnet motor with low space harmonic," IEEE Transactions on Magnetics, Vol. 58, No. 1, 1-12, 2022.
doi:10.1109/tmag.2021.3111752

11. Lan, Hua, Jibin Zou, Yongxiang Xu, and Mingchuan Liu, "Effect of local tangential force on vibration performance in fractional-slot concentrated winding permanent magnet synchronous machines," IEEE Transactions on Energy Conversion, Vol. 34, No. 2, 1082-1093, 2019.
doi:10.1109/tec.2018.2881043

12. Fang, Li, Dawei Li, Chaojie Shi, and Ronghai Qu, "Design and analysis of fractional pole-pair linear permanent magnet machine," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 10, No. 2, 1766-1776, 2022.
doi:10.1109/jestpe.2021.3081802

13. Shen, Qiping, Jun Cheng, Dong Guo, and Tianhai Yang, "Analysis and suppression of electromagnetic vibration noise of fractional-slot concentrated-windings interior PMSMs," IEEE Transactions on Transportation Electrification, Vol. 10, No. 3, 5270-5281, 2024.
doi:10.1109/tte.2023.3330168

14. Ayub, Muhammad, Ghulam Jawad, and Byung-Il Kwon, "Consequent-pole hybrid excitation brushless wound field synchronous machine with fractional slot concentrated winding," IEEE Transactions on Magnetics, Vol. 55, No. 7, 1-5, 2019.
doi:10.1109/tmag.2018.2890509

15. Ghods, Mehrage, Hamed Gorginpour, Jawad Faiz, Mohammad Amin Bazrafshan, and Mohammad Sedigh Toulabi, "Design and enhanced equivalent magnetic network modeling of a fractional-slot spoke-array Vernier PM machine with rotor flux barriers," IEEE Transactions on Energy Conversion, Vol. 38, No. 2, 1060-1072, 2023.
doi:10.1109/tec.2022.3219249

16. Chung, Shi-Uk, Ji-Won Kim, Yon-Do Chun, Byung-Chul Woo, and Do-Kwan Hong, "Fractional slot concentrated winding PMSM with consequent pole rotor for a low-speed direct drive: Reduction of rare earth permanent magnet," IEEE Transactions on Energy Conversion, Vol. 30, No. 1, 103-109, 2015.
doi:10.1109/tec.2014.2352365

17. Xu, Jing and Wei Xu, "The design of permanent magnet machine with segmented poles based on nanocomposite magnets," IEEE Transactions on Applied Superconductivity, Vol. 34, No. 8, 1-5, 2024.
doi:10.1109/tasc.2024.3465374

18. Zhu, Xuhui, Meiling Zhao, Huanzhi Wang, Yiming Shen, You Zhou, Yaojie He, and Christopher H. T. Lee, "Design and investigation of flux-reversal permanent-magnet motor with less rare-earth magnet for low-cost application," IEEE Transactions on Transportation Electrification, Vol. 11, No. 1, 4133-4144, 2025.
doi:10.1109/tte.2024.3454225

19. Ajamloo, Akbar Mohammadi, Aghil Ghaheri, Mohamed N. Ibrahim, and Peter Sergeant, "A new hybrid permanent magnet-assisted synchronous reluctance motor with efficient utilization of rare-earth permanent magnets," IEEE Transactions on Energy Conversion, Vol. 40, No. 2, 1325-1338, 2025.
doi:10.1109/tec.2024.3486933

20. Kazemisangdehi, Seyedmilad, Z. Q. Zhu, Yanjian Zhou, Hailong Liu, Liang Chen, and Lei Yang, "Novel parallel hybrid rare-earth and ferrite magnets in V-spoke interior PM synchronous machine," IEEE Transactions on Industry Applications, Vol. 61, No. 2, 2972-2982, 2025.
doi:10.1109/tia.2024.3524978

21. Zhao, Wenliang, Zhishuo Yang, Yan Liu, and Xiuhe Wang, "Analysis of a novel surface-mounted permanent magnet motor with hybrid magnets for low cost and low torque pulsation," IEEE Transactions on Magnetics, Vol. 57, No. 6, 1-4, 2021.
doi:10.1109/tmag.2021.3057391

22. Han, Jianbin and Zhuoran Zhang, "Design and optimization of a low-cost hybrid-pole rotor for spoke-type permanent magnet machine," IEEE Transactions on Magnetics, Vol. 58, No. 2, 1-5, 2022.
doi:10.1109/tmag.2021.3090655

23. Kazemisangdehi, Seyedmilad, Z. Q. Zhu, Liang Chen, Lei Yang, and Yanjian Zhou, "A mixed hybrid rare-earth and ferrite magnet asymmetric V-shape IPMSM," IEEE Transactions on Transportation Electrification, Vol. 11, No. 4, 8742-8755, 2025.
doi:10.1109/tte.2025.3554499

24. Ji, Yu, Yanxin Li, and Qinfen Lu, "Investigation of a novel hybrid less-rare-earth consequent-pole interior permanent magnet machine with asymmetric rotor," 2023 26th International Conference on Electrical Machines and Systems (ICEMS), 5354-5359, Zhuhai, China, 2023.
doi:10.1109/ICEMS59686.2023.10344715

25. Chen, Yunyun, Tongle Cai, Xiaoyong Zhu, and Yu Ding, "Optimization of a new asymmetric-hybrid-PM machine with high torque density and low torque ripple considering the difference of magnetic materials," IEEE Transactions on Magnetics, Vol. 58, No. 2, 1-5, 2022.
doi:10.1109/tmag.2021.3086859

26. Dajaku, Gurakuq, "Comparison study of permanent magnet synchronous machines with consequent pole and HUPM rotor," IEEE Transactions on Magnetics, Vol. 58, No. 3, 1-10, 2022.
doi:10.1109/tmag.2022.3141905

27. Dai, Yunfei, Dong-Woo Lee, Houng-Kun Joung, and Ho-Joon Lee, "Optimization on torque ripple performance in ISG motors with fractional slot distributed windings and rotor notching," IEEE Access, Vol. 12, 123872-123882, 2024.
doi:10.1109/access.2024.3433452

28. Dutta, Rukmi, Alireza Pouramin, and Muhammed F. Rahman, "A novel rotor topology for high-performance fractional slot concentrated winding interior permanent magnet machine," IEEE Transactions on Energy Conversion, Vol. 36, No. 2, 658-670, 2021.
doi:10.1109/tec.2020.3030302

29. Zhu, Z. Q. and D. Howe, "Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors," IEEE Transactions on Magnetics, Vol. 28, No. 2, 1371-1374, 1992.
doi:10.1109/20.123947

30. Sun, H. Y. and K. Wang, "Effect of third harmonic flux density on cogging torque in surface-mounted permanent magnet machines," IEEE Transactions on Industrial Electronics, Vol. 66, No. 8, 6150-6158, 2019.
doi:10.1109/tie.2018.2875639