Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-12
Solution of One-Hop Sky-Wave Field of Arbitrarily Oriented LF Electric Dipole in the Planar Stratified Earth-Ionosphere Waveguide
By
Progress In Electromagnetics Research C, Vol. 164, 208-213, 2026
Abstract
In this paper, a method is proposed for solving the one-hop sky-wave propagation problems of an arbitrarily oriented lowfrequency (LF) electric dipole within a planar layered Earth-ionosphere waveguide. The purpose of this study is to clarify the relationship between the radiation field and the direction of the electric dipole source in a planar-layered Earth-ionosphere waveguide. In deriving the specific formulas, we employed the ideal far-field approximation idea for an arbitrarily oriented electric dipole in free space and the method of images in layered media. The reflection characteristics of different polarized plane waves at the interface were also taken into account. Based on the improved wave-hop theory, the expressions for the one-hop sky-wave field excited by dipole sources with different directions suitable for an irregular surface are further derived. Using the proposed method, we calculated the sky-wave fields of electric dipoles operating at 100 kHz with various orientations at different receiver altitudes. The results show that the proposed method can be conveniently used to analyze the one-hop sky-wave field of the electric dipole sources with various orientations in a planar stratified Earth-ionosphere waveguide and provides an efficient modeling tool for LF communication system design and signal prediction over complex terrain.
Citation
Xinyue Hu, Lili Zhou, Zhonglin Mu, Ying Zhang, and Jinsheng Zhang, "Solution of One-Hop Sky-Wave Field of Arbitrarily Oriented LF Electric Dipole in the Planar Stratified Earth-Ionosphere Waveguide," Progress In Electromagnetics Research C, Vol. 164, 208-213, 2026.
doi:10.2528/PIERC25111002
References

1. Zhou, L., Y. Zheng, Z. Mu, X. Hu, X. Zhu, and L. He, "Distinction and characteristic analysis of different modes of low-frequency one-hop sky wave in the day-night transition area," Acta Electronica Sinica, Vol. 51, No. 7, 1964-1969, 2023.
doi:10.12263/DZXB.20220659        Google Scholar

2. Kim, Woohyun, Pyo-Woong Son, Sul Gee Park, Sang Hyun Park, and Jiwon Seo, "First demonstration of the Korean eLoran accuracy in a narrow waterway using improved ASF maps," IEEE Transactions on Aerospace and Electronic Systems, Vol. 58, No. 2, 1492-1496, 2022.
doi:10.1109/taes.2021.3114272        Google Scholar

3. Fan, Xiangpeng, Yijun Zhang, Paul R. Krehbiel, Yang Zhang, Dong Zheng, Wen Yao, Liangtao Xu, Hengyi Liu, and Weitao Lyu, "Application of ensemble empirical mode decomposition in low-frequency lightning electric field signal analysis and lightning location," IEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 1, 86-100, 2021.
doi:10.1109/tgrs.2020.2991724        Google Scholar

4. Lü, Xiaozhou, Xi Chen, Weiqiang Zhang, Long Gu, and Weimin Bao, "Acoustically actuated compact magnetoelectric antenna for low-frequency underwater communication," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 11, 8493-8503, 2023.
doi:10.1109/tap.2023.3307711        Google Scholar

5. Niknam, Kaiser and Jamesina J. Simpson, "A review of grid-based, time-domain modeling of electromagnetic wave propagation involving the ionosphere," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 6, 214-228, 2021.
doi:10.1109/jmmct.2021.3136128        Google Scholar

6. Bérenger, Jean-Pierre, "FDTD propagation of VLF-LF waves in the presence of ions in the Earth-ionosphere waveguide," Annals of Telecommunications, Vol. 75, No. 7, 437-446, 2020.
doi:10.1007/s12243-020-00756-5        Google Scholar

7. Panyukov, Anatoly V., "Estimation of the location of an arbitrarily oriented dipole under single-point direction finding," Journal of Geophysical Research: Atmospheres, Vol. 101, No. D10, 14977-14982, 1996.
doi:10.1029/96jd00067        Google Scholar

8. Wakai, N., N. Kurihara, and A. Otsuka, "Numerical method for calculating LF sky-wave, ground-wave and their resultant wave field strengths," Electronics Letters, Vol. 40, No. 5, 288-290, 2004.
doi:10.1049/el:20040207        Google Scholar

9. Wait, James R., "A diffraction theory for LF sky-wave propagation," Journal of Geophysical Research, Vol. 66, No. 6, 1713-1724, 1961.
doi:10.1029/JZ066i006p01713        Google Scholar

10. Nazari, Mohsen Eslami and Weimin Huang, "An analytical solution of electromagnetic radiation of a vertical dipole over a layered half-space," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 1181-1185, 2020.
doi:10.1109/tap.2019.2938675        Google Scholar

11. Karami, Hamidreza, Keyhan Sheshyekani, and Farhad Rachidi, "Mixed-potential integral equation for full-wave modeling of grounding systems buried in a lossy multilayer stratified ground," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 5, 1505-1513, 2017.
doi:10.1109/temc.2017.2655497        Google Scholar

12. Mu, Zhonglin, Qiaoqiao Wang, Lili Zhou, Xinyue Hu, and Lifeng He, "Comparison of low frequency multi-hop sky wave delay estimation algorithms," Chinese Journal of Radio Science, Vol. 37, No. 2, 244-250, 2022.
doi:10.12265/j.cjors.2021262        Google Scholar

13. Wait, J. R., "The ancient and modern history of EM ground-wave propagation," IEEE Antennas and Propagation Magazine, Vol. 40, No. 5, 7-24, 1998.
doi:10.1109/74.735961        Google Scholar

14. Li, Kai, Electromagnetic Fields in Stratified Media, Zhejiang University Press, Hangzhou, China, 2009.
doi:10.1007/978-3-540-95964-9

15. Li, Zheng Xu, Hui Ran Zeng, and Kai Li, "Near field generated by a VLF magnetic dipole with arbitrary orientation in an anisotropic magnetoplasma," IEEE Transactions on Plasma Science, Vol. 51, No. 6, 1527-1539, 2023.
doi:10.1109/tps.2023.3277280        Google Scholar

16. Xu, Honglei, Tingting Gu, Juan Zheng, and Kai Li, "LF sky wave propagation excited by a horizontal electric dipole towards understanding of its radiation mechanism," Applied Computational Electromagnetics Society Journal (ACES), Vol. 33, No. 6, 657-664, 2018.        Google Scholar

17. Cao, Le, Bing Wei, and De-Biao Ge, "Computation of far radiation field of an arbitrarily oriented dipole above layered anisotropic half space," Waves in Random and Complex Media, Vol. 23, No. 4, 446-460, 2013.
doi:10.1080/17455030.2013.850551        Google Scholar

18. Zhou, Li-Li, Xin-Yue Hu, Zhong-Lin Mu, Rui Zhang, and Yue Zheng, "Far-field calculation of an arbitrarily oriented electric dipole in horizontal layered confined space," Acta Physica Sinica, Vol. 71, No. 20, 1-7, 2022.
doi:10.7498/aps.71.20220545        Google Scholar

19. Zhou, Lili, Yuhong Jiang, Zhonglin Mu, Qiaoqiao Wang, Xinyue Hu, and Lifeng He, "Study of Loran-C one-hop sky-wave fields at different altitudes above the ground," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 12, 2368-2371, 2021.
doi:10.1109/lawp.2021.3111690        Google Scholar

20. Xi, Xiaoli, Lili Zhou, Jinsheng Zhang, Jiangfan Liu, and Lili Wang, "Combined IE-FDTD algorithm for long-range Loran-C ground-wave propagation," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3802-3808, 2012.
doi:10.1109/tap.2012.2201102        Google Scholar

21. Zhou, L., Y. Zhang, Z. Mu, and X. Hu, "The calculation of the far-field radiation field of an electric dipole in anisotropic layered confined space," Journal of Shaanxi University of Science & Technology, Vol. 23, No. 4, 209-214, 2025.
doi:10.3969/j.issn.1000-5811.2025.04.024        Google Scholar