Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-26
Design and Analysis of Interior Permanent-Magnet Machine for Improving Reluctance Torque and Heat Dissipation
By
Progress In Electromagnetics Research C, Vol. 164, 35-40, 2026
Abstract
This paper proposes an Interior Permanent Magnet (IPM) machine for electric vehicles, which features excellent heat dissipation performance and maximizes the utilization of reluctance torque. The inverted triangular structure design, combined with multi-layer flux barriers and ventilation auxiliary slots, effectively increases the saliency ratio and enhances the reluctance torque. The rotor self-ventilation slots significantly expand the heat dissipation area, improve the heat dissipation performance under steady-state operation, and extend the service life of the rotor. In addition, performance evaluation of the IPM machine is conducted, covering back-EMF, torque performance, dq-axis inductances, rotor stress and deformation, as well as thermal performance. This work provides guidance and reference for machine design.
Citation
Yujie Tang, Jingfeng Mao, and Junqiang Zheng, "Design and Analysis of Interior Permanent-Magnet Machine for Improving Reluctance Torque and Heat Dissipation," Progress In Electromagnetics Research C, Vol. 164, 35-40, 2026.
doi:10.2528/PIERC25111303
References

1. Chen, Hao, Ayman M. El-Refaie, and Yujing Liu, "Investigation of a PM flux-modulated motor with mechanical flux-weakening solution for wide speed-range operation in traction applications," IEEE Transactions on Industrial Electronics, Vol. 71, No. 8, 8646-8657, Aug. 2024.
doi:10.1109/tie.2023.3319719        Google Scholar

2. Xu, Meimei, Wenxiang Zhao, Jinghua Ji, Qian Chen, and Guohai Liu, "Auxiliary notching rotor design to minimize torque ripple for interior permanent magnet machines," IEEE Transactions on Industrial Electronics, Vol. 71, No. 10, 12051-12062, Oct. 2024.
doi:10.1109/tie.2024.3349580        Google Scholar

3. Li, Shihao, Chong Di, and Xiaohua Bao, "Axis-shifted machines with hybrid rotors considering forward and reverse operations," IEEE Transactions on Magnetics, Vol. 59, No. 11, 1-6, Nov. 2023.
doi:10.1109/tmag.2023.3300842        Google Scholar

4. Li, Shiqi, Wenming Tong, Shengnan Wu, and Renyuan Tang, "General analytical model for electromagnetic-thermal bi-directional coupling of IPM motors in electric vehicles considering different rotor structures," IEEE Transactions on Vehicular Technology, Vol. 73, No. 11, 16470-16480, Nov. 2024.
doi:10.1109/tvt.2024.3411068        Google Scholar

5. Du, Guanghui, Honglin Yan, Niumei Li, Lin Li, Yanhong Chen, Gang Lei, and Jianguo Zhu, "Four rotor structures for high speed interior permanent magnet motor considering mechanical, electromagnetic and thermal performance," IEEE Transactions on Transportation Electrification, Vol. 11, No. 1, 2595-2608, Feb. 2025.
doi:10.1109/tte.2024.3424899        Google Scholar

6. Dai, Litao, Jian Gao, Shuangxia Niu, and Shoudao Huang, "Multi-electromagnetic performance optimization of double-layer interior permanent magnet synchronous machine," IEEE Transactions on Industrial Electronics, Vol. 71, No. 11, 14535-14545, Nov. 2024.
doi:10.1109/tie.2024.3379651        Google Scholar

7. Jansson, Elisabet, Torbjörn Thiringer, and Emma Arfa Grunditz, "Influence of flux barrier shape and mechanical constraints on field-weakening performance in double-layer interior permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 40, No. 1, 30-42, Mar. 2025.
doi:10.1109/tec.2024.3421954        Google Scholar

8. Ji, Yu, Yanxin Li, and Qinfen Lu, "Novel asymmetric rotor hybrid interior permanent magnet synchronous machines for torque density and PM utilization ratio improvement," IEEE Transactions on Industry Applications, Vol. 61, No. 6, 9159-9171, Nov.-Dec. 2025.
doi:10.1109/tia.2025.3575051        Google Scholar

9. Wang, Bingdong, Daohan Wang, Chen Peng, Chengqi Wang, Cheng Xu, and Xiuhe Wang, "Interior permanent magnet synchronous machines with composed T-shaped notching rotor," IEEE Transactions on Industrial Electronics, Vol. 71, No. 6, 5519-5529, Jun. 2024.
doi:10.1109/tie.2023.3292854        Google Scholar

10. Ajamloo, Akbar Mohammadi, Aghil Ghaheri, Mohamed N. Ibrahim, and Peter Sergeant, "Investigation of different pole configurations in new asymmetric permanent magnet synchronous reluctance machines," IEEE Transactions on Magnetics, Vol. 61, No. 9, 1-6, Sep. 2025.
doi:10.1109/tmag.2025.3528623        Google Scholar

11. Wang, Luyao, Xueyi Zhang, Jinke Wu, Mingjun Wang, Wenjing Hu, Huihui Geng, and Xingzhe Pang, "Multi-objective optimization design of a segmented asymmetric V-type interior permanent magnet synchronous motor," IEEE Transactions on Magnetics, Vol. 61, No. 1, 1-12, Jan. 2025.
doi:10.1109/tmag.2024.3499366        Google Scholar

12. Lee, Jin-Hee, Keun-Young Yoon, and Byung-Il Kwon, "Optimization of a double-layer flared-shaped IPMSM for torque ripple reduction," IEEE Access, Vol. 13, 165999-166011, 2025.
doi:10.1109/access.2025.3609485        Google Scholar

13. Cheng, Yuan, Ling Ding, Tianxu Zhao, and Shumei Cui, "Design and optimization of electric vehicle traction motor considering rotor topology and manufacturing uncertainty," IEEE Transactions on Industrial Electronics, Vol. 71, No. 5, 5034-5044, May 2024.
doi:10.1109/tie.2023.3288195        Google Scholar

14. Bi, Yanding, Jiahui Huang, Huihuan Wu, Weinong Fu, Shuangxia Niu, and Xing Zhao, "A general pattern of assisted flux barriers for design optimization of an asymmetric V-shape interior permanent magnet machine," IEEE Transactions on Magnetics, Vol. 58, No. 9, 1-4, Sep. 2022.
doi:10.1109/tmag.2022.3159960        Google Scholar

15. Nobahari, Amin, Abolfazl Vahedi, and Reza Nasiri-Zarandi, "A modified permanent magnet-assisted synchronous reluctance motor design for torque characteristics improvement," IEEE Transactions on Energy Conversion, Vol. 37, No. 2, 989-998, Jun. 2022.
doi:10.1109/tec.2021.3127081        Google Scholar

16. Mohammadi Ajamloo, Akbar, Aghil Ghaheri, Mohamed N. Ibrahim, and Peter Sergeant, "Principle of torque-axis alignment in new asymmetric PM synchronous reluctance machines: Towards less-rare-earth PM machines," IEEE Transactions on Transportation Electrification, Vol. 11, No. 2, 6392-6405, Apr. 2025.
doi:10.1109/tte.2024.3509499        Google Scholar

17. Liu, Zeyu, Yan Hu, Jiacheng Wu, Bingyi Zhang, and Guihong Feng, "A novel modular permanent magnet-assisted synchronous reluctance motor," IEEE Access, Vol. 9, 19947-19959, 2021.
doi:10.1109/access.2021.3054766        Google Scholar

18. Mohammadi, Ali and Seyyed Mehdi Mirimani, "Design and analysis of a novel permanent magnet assisted synchronous reluctance machine using finite-element-method," 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 1-5, Tehran, Iran, 2020.
doi:10.1109/PEDSTC49159.2020.9088379

19. Gao, Yasen, Daihong Jiang, Huangqiu Zhu, Bo Mao, and Yichen Liu, "Design optimization of asymmetric permanent magnet assisted bearingless synchronous reluctance motor," IEEE Transactions on Energy Conversion, Vol. 40, No. 2, 1644-1654, Jun. 2025.
doi:10.1109/tec.2024.3505844        Google Scholar

20. Xie, Ying, Jiawei Shao, Shoucong He, Bitian Ye, Fan Yang, and Lijing Wang, "Novel PM-assisted synchronous reluctance machines using asymmetrical rotor configuration," IEEE Access, Vol. 10, 79564-79573, 2022.
doi:10.1109/access.2022.3195047        Google Scholar