Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-09
Design and Performance Evaluation of a Narrow-Band Metasurface Radomes for Reduction of RCS in Stealth Applications
By
Progress In Electromagnetics Research C, Vol. 164, 186-194, 2026
Abstract
A compact Meta-surface absorber based on a novel combination of concentric split-ring resonators (SRRs) and arc dipoles is presented in this work. The proposed CSAD unit cell is a copper structure consisting of Quad dipoles and SRRs with a substrate with a dielectric constant of 4.3 and the tangent loss will be 0.02. The design resonates,17 GHz with a bandwidth of 300 MHz and 99.9% absorption. The symmetric single-band meta-surface allows for polarization-independent, angle-stable absorption up to 60°. The unit cell size for the proposed design is 10.375 × 10.375 × 1.6 mm3. It can be used for reducing the radar cross-section for stealth applications, such as UAVs that require selective frequency absorption. Simulations closely match observations, verifying the meta-surface's high stability and demonstrating its usefulness for practical electromagnetic validations.
Citation
Pandigunta Aruna Kumari, Madhavareddy Venkata Narayana, Govardhani Immadi, Yogesh Solunke, and Kanaparthi Venkata Phani Kumar, "Design and Performance Evaluation of a Narrow-Band Metasurface Radomes for Reduction of RCS in Stealth Applications," Progress In Electromagnetics Research C, Vol. 164, 186-194, 2026.
doi:10.2528/PIERC25111403
References

1. Yogeshwaran, A. and K. Umadevi, "An efficient wideband low noise amplifier (WLNA) using advanced design system based industrial micro strip antenna," Microprocessors and Microsystems, Vol. 79, 103302, 2020.
doi:10.1016/j.micpro.2020.103302        Google Scholar

2. Hu, Jie, Sankhyabrata Bandyopadhyay, Yu-Hui Liu, and Li-Yang Shao, "A review on metasurface: From principle to smart metadevices," Frontiers in Physics, Vol. 8, 586087, 2021.
doi:10.3389/fphy.2020.586087        Google Scholar

3. Budhu, Jordan, Nicholas Ventresca, and Anthony Grbic, "Unit cell design for aperiodic metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 9, 7387-7394, 2023.
doi:10.1109/tap.2023.3288549        Google Scholar

4. Anitha, C., Vivek Singh, Ajay Kumar Dwivedi, and Nagesh Kallollu Narayanaswamy, "Review: Metamaterial/metasurface applications in antenna domain," Opto-Electronics Review, Vol. 32, No. 3, e151692, 2024.
doi:10.24425/opelre.2024.151692        Google Scholar

5. Li, Aobo, Shreya Singh, and Dan Sievenpiper, "Metasurfaces and their applications," Nanophotonics, Vol. 7, No. 6, 989-1011, 2018.
doi:10.1515/nanoph-2017-0120        Google Scholar

6. Khan, Bilawal, Babar Kamal, Sadiq Ullah, Imran Khan, Jawad Ali Shah, and Jingdong Chen, "Design and experimental analysis of dual-band polarization converting metasurface for microwave applications," Scientific Reports, Vol. 10, No. 1, 15393, 2020.
doi:10.1038/s41598-020-71959-y        Google Scholar

7. Qi, Yunping, Baohe Zhang, Chuqin Liu, and Xiangyu Deng, "Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction," IEEE Access, Vol. 8, 116675-116684, 2020.
doi:10.1109/access.2020.3004127        Google Scholar

8. Budhu, Jordan, Nicholas Ventresca, and Anthony Grbic, "Unit cell design for aperiodic metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 9, 7387-7394, 2023.
doi:10.1109/tap.2023.3288549        Google Scholar

9. Fadhil, Tamara Z., Noor Asniza Murad, Mohamad Kamal A. Rahim, M. R. Hamid, and Levy Olivia Nur, "A beam-split metasurface antenna for 5G applications," IEEE Access, Vol. 10, 1162-1174, 2021.
doi:10.1109/access.2021.3137324        Google Scholar

10. Geng, Wei, Qingxin Guo, Jianxun Su, and Zengrui Li, "Dartboard metasurface for RCS reduction and OAM wave generation," IEEE Transactions on Antennas and Propagation, Vol. 73, No. 4, 2497-2509, 2025.
doi:10.1109/tap.2025.3537690        Google Scholar

11. Bandyopadhyay, Baisakhi, Sudeb Bhattacharya, Rahul Kumar Jaiswal, Mondeep Saikia, and Kumar Vaibhav Srivastava, "Wideband RCS reduction of a linear patch antenna array using AMC metasurface for stealth applications," IEEE Access, Vol. 11, 127458-127467, 2023.
doi:10.1109/access.2023.3332120        Google Scholar

12. Song, Zicheng, Jiaqi Zhu, Lei Yang, Pingping Min, and Feng Han Lin, "Wideband metasurface absorber (metabsorber) using characteristic mode analysis," Optics Express, Vol. 29, No. 22, 35387-35399, 2021.
doi:10.1364/oe.443182        Google Scholar

13. Saxena, Gaurav, Sanjay Kumar, Sanjay Chintakindi, Abdulsalam Al-Tamim, Mustufa Haider Abidi, Wigdan Aref Mohammed Saif, Sahil Kansal, Rishabh Jain, Sajjan Singh, Anand Kumar Dohare, Praveen Kumar Maduri, Mayank Kumar, Himanshu Singh, and Yogendra Kumar Awasthi, "Metasurface instrumented high gain and low RCS X-band circularly polarized MIMO antenna for IoT over satellite application," IEEE Transactions on Instrumentation and Measurement, Vol. 72, 1-10, 2023.
doi:10.1109/TIM.2023.3287241        Google Scholar

14. Koohestani, Mohsen and Alireza Ghaneizadeh, "An ultra-thin double-functional metasurface patch antenna for UHF RFID applications," Scientific Reports, Vol. 11, No. 1, 857, 2021.
doi:10.1038/s41598-020-79506-5        Google Scholar

15. Coelho, H. J. S., B. Araújo, M. W. B. Silva, T. N. Ferreira, A. L. P. S. Campos, C. Junqueira, Erich Kemptner, and Andrey Osipov, "Multiband metasurface-based absorber for applications in X, Ku, and K bands," Radio Science, Vol. 58, No. 8, 1-11, 2023.
doi:10.1029/2023rs007711        Google Scholar

16. Zhang, Lijian, Chuang Gao, Hua Guo, Haoyu Zhang, Zepeng Zhao, and Tian Liu, "Efficient polarization conversion metasurface for scattered beam control and RCS reduction," Scientific Reports, Vol. 14, No. 1, 26260, 2024.
doi:10.1038/s41598-024-77961-y        Google Scholar

17. Gu, Huan, "Antenna stealth design based on polarization reconfigurable metasurfaces," 2024 IEEE 7th International Conference on Electronic Information and Communication Technology (ICEICT), 322-326, Xi’an, China, 2024.
doi:10.1109/ICEICT61637.2024.10670835

18. Joy, Vineetha, Alka Dileep, P. V. Abhilash, Raveendranath U. Nair, and Hema Singh, "Metasurfaces for stealth applications: A comprehensive review," Journal of Electronic Materials, Vol. 50, No. 6, 3129-3148, 2021.
doi:10.1007/s11664-021-08927-3        Google Scholar

19. Shao, Linda and Weiren Zhu, "Recent advances in electromagnetic metamaterials and metasurfaces for polarization manipulation," Journal of Physics D: Applied Physics, Vol. 57, No. 34, 343001, 2024.
doi:10.1088/1361-6463/ad4cfa        Google Scholar

20. Solunke, Yogesh and Ashwin Kothari, "A low‐RCS dual‐bandstop golden ratio‐based fractal‐FSS for defense applications," International Journal of Communication Systems, Vol. 38, No. 4, e5997, 2025.
doi:10.1002/dac.5997        Google Scholar

21. Younis, Fatima, Owais Khan, Jawad Ahmad, Muhammad Javed Qasim, Heng Luo, and Shiliang Wang, "A highly efficient triple band metasurface enabled absorber for 5G/6G millimeter wave applications," Scientific Reports, Vol. 15, No. 1, 29455, 2025.
doi:10.1038/s41598-025-12790-1        Google Scholar

22. Nipun, Md. Murad Kabir, Md. Jahedul Islam, and Md. Moniruzzaman, "A triple-band metamaterial absorber for gas sensing and refractive index detection through enhanced FOM and Q-factor performance in the THz regime," Results in Optics, Vol. 21, 100822, 2025.
doi:10.1016/j.rio.2025.100822        Google Scholar

23. Faysal, Mohammed, Mohammad Tariqul Islam, Md. Kutub Uddin, Mohammad Lutful Hakim, Badariah Bais, Kamarulzaman Mat, and Ali F. Almutairi, "Polarization independent interconnected split-ring resonator with enclosed F shape metamaterial absorber for wireless technology," 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), 627-635, Lisbon, Portugal, September 02-06, 2024.
doi:10.1109/ICEAA61917.2024.10701919

24. Huang, Qin, Wei Xie, Faleh Zafer Alqahtany, Taishan Cao, Gaber A. M. Mersal, and Zhexenbek Toktarbay, "Study on thin-layer broadband metamaterial absorber based on composite multi-opening ring pattern of magnetic dielectric layers," Advanced Composites and Hybrid Materials, Vol. 8, No. 2, 180, 2025.
doi:10.1007/s42114-025-01250-z        Google Scholar

25. Hasan, Md. Mhedi, Mohammad Tariqul Islam, M. Salaheldeen, Sami H. A. Almalki, Abdullah G. Alharbi, Haitham Alsaif, Md. Shabiul Islam, and Md. Samsuzzaman, "Polarization insensitive dual band metamaterial with absorptance for 5G sub-6 GHz applications," Scientific Reports, Vol. 12, No. 1, 8495, 2022.
doi:10.1038/s41598-022-12106-7        Google Scholar

26. Chen, Xudong, Tomasz M. Grzegorczyk, Bae-Ian Wu, Joe Pacheco, Jr., and Jin Au Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/physreve.70.016608        Google Scholar

27. Tsang, Leung and Jin Au Kong, Scattering of Electromagnetic Waves: Advanced Topics, John Wiley & Sons, 2004.
doi:10.1002/0471224278

28. Moss, Christopher D., Tomasz M. Grzegorczyk, Y. Zhang, and Jin Au Kong, "Numerical studies of left handed metamaterials," Progress In Electromagnetics Research, Vol. 35, 315-334, 2002.
doi:10.2528/pier02052409        Google Scholar

29. Singh, Vineet, Somak Bhattacharyya, and Rajan Agrahari, "A low-profile tri-functional metasurface toward polarization conversions and absorption," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 9, 2593-2597, 2024.
doi:10.1109/lawp.2024.3400375        Google Scholar

30. Bakir, Mehmet, Kemal Delihacioglu, Muharrem Karaaslan, Furkan Dincer, and Cumali Sabah, "U-shaped frequency selective surfaces for single-and dual-band applications together with absorber and sensor configurations," IET Microwaves, Antennas & Propagation, Vol. 10, No. 3, 293-300, 2016.
doi:10.1049/iet-map.2015.0341        Google Scholar

31. Jasim, Mustafa B. and Khalil Sayidmarie, "Radar cross-section reduction of planar absorbers using resistive FSS unit cells," Journal of Telecommunications and Information Technology, No. 4, 61-67, 2023.
doi:10.26636/jtit.2023.4.1331        Google Scholar

32. Yadav, Jyoti, Mondeep Saikia, Kumar Vaibhav Srivastava, and Janakarajan Ramkumar, "Three-dimensional rotation of FSS unit cell in broadband microwave absorber for large oblique incidence response," IEEE Transactions on Electromagnetic Compatibility, Vol. 65, No. 5, 1320-1328, 2023.
doi:10.1109/temc.2023.3288351        Google Scholar

33. Azad, Abul K., Wilton J. M. Kort-Kamp, Milan Sykora, Nina R. Weisse-Bernstein, Ting S. Luk, Antoinette J. Taylor, Diego A. R. Dalvit, and Hou-Tong Chen, "Metasurface broadband solar absorber," Scientific Reports, Vol. 6, No. 1, 20347, 2016.
doi:10.1038/srep20347        Google Scholar