Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-03
Bandwidth-Enhanced Waveguide-Fed Metasurface Antennas Based on CELC Polarizability Mapping
By
Progress In Electromagnetics Research C, Vol. 164, 105-116, 2026
Abstract
This work presents the design, characterization, and experimental validation of waveguide-fed metasurface antennas based on complementary electric-LC (CELC) resonators. The magnetic polarizability of individual unit cells was extracted using the Incremental Difference Method, enabling physically grounded complex weighting of each metasurface element without the need for external feeding networks. Two CELC geometries (square and circular) were investigated under identical WR340 waveguide excitation. The circular CELC exhibited a smoother current distribution and a more uniform polarizability profile, as observed in the polarizability-mapping results, whereas the square CELC provided a slightly higher gain owing to its sharper magnetic resonance. Lateral-slot perturbations were introduced as a simple geometric modification to overcome the intrinsic narrowband nature of Lorentz-type resonators. The simulated and measured results confirm a significant improvement in impedance bandwidth, reaching 194 MHz (simulated) and 189 MHz (measured) for the square slot geometry, and 222 MHz (simulated) and 209 MHz (measured) for the circular slot geometry. Radiation-pattern measurements in an indoor antenna chamber showed good agreement with full-wave simulations, validating the polarizability-based weighting mechanism and the overall metasurface antenna model. The results demonstrate that magnetic-polarizability mapping combined with geometry-tailored perturbations provides an effective and experimentally verified approach for compact and bandwidth-enhanced metasurface antenna design.
Citation
Ivan Eduardo Diaz Pardo, Carlos Arturo Suarez Fajardo, Juan Domingo Baena Doello, and Hector Guarnizo, "Bandwidth-Enhanced Waveguide-Fed Metasurface Antennas Based on CELC Polarizability Mapping," Progress In Electromagnetics Research C, Vol. 164, 105-116, 2026.
doi:10.2528/PIERC25111602
References

1. Engheta, Nader and Richard W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006.

2. Caloz, Christophe and Tatsuo Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
doi:10.1002/0471754323

3. Shamim, Shadmani, Abu S. M. Mohsin, Md. Mosaddequr Rahman, and Mohammed Belal Hossain Bhuian, "Recent advances in the metamaterial and metasurface-based biosensor in the gigahertz, terahertz, and optical frequency domains," Heliyon, Vol. 10, No. 13, e33272, 2024.
doi:10.1016/j.heliyon.2024.e33272        Google Scholar

4. Yang, Wanchen, Jinghao Li, Dongxu Chen, Yue Cao, Quan Xue, and Wenquan Che, "Advanced metasurface-based antennas: A review," IEEE Open Journal of Antennas and Propagation, Vol. 6, No. 1, 6-24, 2025.
doi:10.1109/ojap.2024.3465513        Google Scholar

5. Lin, Feng Han and Zhi Ning Chen, "Low-profile wideband metasurface antennas using characteristic mode analysis," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1706-1713, 2017.
doi:10.1109/tap.2017.2671036        Google Scholar

6. Huang, Chongwen, Alessio Zappone, George C. Alexandropoulos, Mérouane Debbah, and Chau Yuen, "Reconfigurable intelligent surfaces for energy efficiency in wireless communication," IEEE Transactions on Wireless Communications, Vol. 18, No. 8, 4157-4170, 2019.
doi:10.1109/twc.2019.2922609        Google Scholar

7. Jian, Mengnan, George C. Alexandropoulos, Ertugrul Basar, Chongwen Huang, Ruiqi Liu, Yuanwei Liu, and Chau Yuen, "Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques," Intelligent and Converged Networks, Vol. 3, No. 1, 1-32, 2022.
doi:10.23919/icn.2022.0005        Google Scholar

8. Selvaraj, Monisha, Ramya Vijay, Rajesh Anbazhagan, and Amirtharajan Rengarajan, "Reconfigurable metasurface: Enabling tunable reflection in 6G wireless communications," Sensors, Vol. 23, No. 22, 9166, 2023.
doi:10.3390/s23229166        Google Scholar

9. Ashraf, Nouman, Taqwa Saeed, Hamidreza Taghvaee, Sergi Abadal, Vasos Vassiliou, Christos Liaskos, Andreas Pitsillides, and Marios Lestas, "Intelligent beam steering for wireless communication using programmable metasurfaces," IEEE Transactions on Intelligent Transportation Systems, Vol. 24, No. 5, 4848-4861, 2023.
doi:10.1109/tits.2023.3241214        Google Scholar

10. Wang, Xin, Jia Qi Han, Guan Xuan Li, De Xiao Xia, Ming Yang Chang, Xiang Jin Ma, Hao Xue, Peng Xu, Rui Jie Li, Kun Yi Zhang, Hai Xia Liu, Long Li, and Tie Jun Cui, "High-performance cost efficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface," Nature Communications, Vol. 14, No. 1, 6002, 2023.
doi:10.1038/s41467-023-41763-z        Google Scholar

11. Hu, Jun, Guo Qing Luo, and Zhang-Cheng Hao, "A wideband quad-polarization reconfigurable metasurface antenna," IEEE Access, Vol. 6, 6130-6137, 2017.
doi:10.1109/access.2017.2766231        Google Scholar

12. Lin, Mingtuan, Xianjun Huang, Bowen Deng, Jihong Zhang, Dongfang Guan, Dingwang Yu, and Yujian Qin, "A high-efficiency reconfigurable element for dynamic metasurface antenna," IEEE Access, Vol. 8, 87446-87455, 2020.
doi:10.1109/access.2020.2994051        Google Scholar

13. Sleasman, Timothy, Mohammadreza F. Imani, Wangren Xu, John Hunt, Tom Driscoll, Matthew S. Reynolds, and David R. Smith, "Waveguide-fed tunable metamaterial element for dynamic apertures," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 606-609, 2016.
doi:10.1109/lawp.2015.2462818        Google Scholar

14. Smith, David R., Okan Yurduseven, Laura Pulido Mancera, Patrick Bowen, and Nathan B. Kundtz, "Analysis of a waveguide-fed metasurface antenna," Physical Review Applied, Vol. 8, No. 5, 054048, Nov. 2017.
doi:10.1103/physrevapplied.8.054048        Google Scholar

15. Bowen, P. T., A. Baron, and D. R. Smith, "Effective-medium description of a metasurface composed of a periodic array of nanoantennas coupled to a metallic film," Physical Review A, Vol. 95, No. 3, 033822, Mar. 2017.
doi:10.1103/physreva.95.033822        Google Scholar

16. Boyarsky, Michael, Mohammadreza F. Imani, and David R. Smith, "Grating lobe suppression in metasurface antenna arrays with a waveguide feed layer," Optics Express, Vol. 28, No. 16, 23991-24004, 2020.
doi:10.1364/oe.398440        Google Scholar

17. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002        Google Scholar

18. Baena, Juan D., Ricardo Marqués, Francisco Medina, and Jesús Martel, "Artificial magnetic metamaterial design by using spiral resonators," Physical Review B, Vol. 69, No. 1, 014402, Jan. 2004.
doi:10.1103/physrevb.69.014402        Google Scholar

19. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, and J. Garcia-Garcia, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/tmtt.2005.845211        Google Scholar

20. Tretyakov, Sergei, Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

21. Schurig, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, No. 4, 041109, 2006.
doi:10.1063/1.2166681        Google Scholar

22. Hand, Thomas H., Jonah Gollub, Soji Sajuyigbe, David R. Smith, and Steven A. Cummer, "Characterization of complementary electric field coupled resonant surfaces," Applied Physics Letters, Vol. 93, No. 21, 212504, 2008.
doi:10.1063/1.3037215        Google Scholar

23. Sakyi, Papa, Jordan Dugan, Debidas Kundu, Tom J. Smy, and Shulabh Gupta, "Waveguide-floquet mapping using surface susceptibilities for passive and active metasurface unit cell characterization," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 9, 7110-7121, 2024.
doi:10.1109/tap.2024.3433601        Google Scholar

24. Diaz, Ivan, Carlos Arturo Suarez Fajardo, Juan Domingo Baena Doello, and Hector Guarnizo, "Subwavelength resonator for the design of a waveguide-fed metasurface antenna," Progress In Electromagnetics Research C, Vol. 156, 113-120, 2025.
doi:10.2528/pierc25041608        Google Scholar

25. Yoo, Insang, Mohammadreza F. Imani, Timothy Sleasman, and David R. Smith, "Efficient complementary metamaterial element for waveguide-fed metasurface antennas," Optics Express, Vol. 24, No. 25, 28686-28692, Dec. 2016.
doi:10.1364/oe.24.028686        Google Scholar