Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-12
ADMM-Based Sparse SAR Imaging Algorithm with Cholesky Decomposition and Dual-Momentum Coupling
By
Progress In Electromagnetics Research C, Vol. 164, 214-223, 2026
Abstract
To address the challenges of high computational complexity in linear system solving and slow convergence of the Alternating Direction Method of Multipliers (ADMM) for compressed sensing Synthetic Aperture Radar (SAR) imaging, this study proposes a precomputation strategy based on Cholesky decomposition. Specifically, the system matrix is decomposed once during the initialization phase and reused across subsequent iterations, substantially reducing the computational overhead associated with the primal variable update. Furthermore, a novel dual-momentum coupling mechanism is designed, and building on Nesterov extrapolation, this mechanism integrates cross-momentum interactions between the real and imaginary components of dual variables, along with the historical variation trends of primal variables, thereby effectively accelerating overall convergence. Both simulated and measured data results demonstrate that the proposed method achieves a significant improvement in computational efficiency while ensuring high imaging quality.
Citation
Enchen Wang, Xuechen Zhang, Daming Lin, and Shumao Qiu, "ADMM-Based Sparse SAR Imaging Algorithm with Cholesky Decomposition and Dual-Momentum Coupling," Progress In Electromagnetics Research C, Vol. 164, 214-223, 2026.
doi:10.2528/PIERC25113001
References

1. Li, Chunsheng, Ze Yu, and Jie Chen, "Overview of techniques for improving high-resolution spaceborne SAR imaging and image quality," Journal of Radars, Vol. 8, No. 06, 717-731, 2019.
doi:10.12000/JR19085        Google Scholar

2. Deng, Yunkai, Weidong Yu, Pei Wang, Dengjun Xiao, Wei Wang, Kaiyu Liu, and Heng Zhang, "The high-resolution synthetic aperture radar system and signal processing techniques: Current progress and future prospects," IEEE Geoscience and Remote Sensing Magazine, Vol. 12, No. 4, 169-189, 2024.
doi:10.1109/MGRS.2024.3456444        Google Scholar

3. Wang, T., B. Liu, Q. Wei, K. Kang, Q. Yu, and B. Cong, "A review on research progresses of compressed sensing imaging radar," Electronics Optics & Control, Vol. 26, No. 7, 1-8, 2019.
doi:10.3969/j.issn.1671-637X.2019.07.001        Google Scholar

4. Bi, Hui, Bingchen Zhang, Xiao Xiang Zhu, Wen Hong, Jinping Sun, and Yirong Wu, "L1-regularization-based sar imaging and CFAR detection via complex approximated message passing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 6, 3426-3440, 2017.
doi:10.1109/tgrs.2017.2671519        Google Scholar

5. Wu, Chenyang, Hui Bi, Bingchen Zhang, Yun Lin, and Wen Hong, "L1 regularization recovered SAR images based interferometric SAR imaging via complex approximated message passing," Image and Signal Processing for Remote Sensing XXIII, Vol. 10427, 347-356, Warsaw, Poland, 2017.
doi:10.1117/12.2278048

6. Bi, Hui, Yong Li, Daiyin Zhu, Guoan Bi, Bingchen Zhang, Wen Hong, and Yirong Wu, "An improved iterative thresholding algorithm for L1-norm regularization based sparse SAR imaging," Science China Information Sciences, Vol. 63, No. 11, 219301, 2020.
doi:10.1007/s11432-020-2994-4        Google Scholar

7. Yuan, T., Y. Wang, H. Kuang, Z. Wang, and Z. Ding, "Multipath ghost suppression of extended targets based on SAR parametric sparse imaging model," Journal of Signal Processing, No. 9, 1596-1607, 2023.
doi:10.16798/j.issn.1003-0530.2023.09.006        Google Scholar

8. Zeng, Jinshan, Shaobo Lin, Yao Wang, and Zongben Xu, "L1/2 regularization: Convergence of iterative half thresholding algorithm," IEEE Transactions on Signal Processing, Vol. 62, No. 9, 2317-2329, 2014.
doi:10.1109/TSP.2014.2309076        Google Scholar

9. Güven, H. Emre, Alper Güngör, and Müjdat Çetin, "An augmented Lagrangian method for complex-valued compressed SAR imaging," IEEE Transactions on Computational Imaging, Vol. 2, No. 3, 235-250, 2016.
doi:10.1109/tci.2016.2580498        Google Scholar

10. Liu, M., Z. Xu, T. Chen, B. Zhang, and Y. Wu, "Low oversampling Staggered SAR imaging method based on L1 & TV regularization," Systems Engineering and Electronics, Vol. 45, No. 9, 2718-2726, 2023.
doi:10.12305/j.issn.1001-506X.2023.09.09        Google Scholar

11. Xu, Zhongqiu, Mingqian Liu, Guoru Zhou, Zhonghao Wei, Bingchen Zhang, and Yirong Wu, "An accurate sparse SAR imaging method for enhancing region-based features via nonconvex and TV regularization," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, 350-363, 2020.
doi:10.1109/jstars.2020.3034431        Google Scholar

12. Diao, Huaian, Yueran Geng, and Ruixiang Tang, "Non-radiating elastic sources in inhomogeneous elastic media at corners with applications," ArXiv Preprint ArXiv:2502.14468, 2025.
doi:10.48550/arXiv.2502.14468        Google Scholar

13. Diao, Huaian, Hongyu Liu, and Qingle Meng, "Dislocations with corners in an elastic body with applications to fault detection," SIAM Journal on Applied Mathematics, Vol. 85, No. 5, 2399-2424, 2025.
doi:10.1137/24m1710267        Google Scholar

14. Diao, Huaian, Hongyu Liu, Qingle Meng, and Li Wang, "On a coupled-physics transmission eigenvalue problem and its spectral properties with applications," Journal of Differential Equations, Vol. 441, 113508, 2025.
doi:10.1016/j.jde.2025.113508        Google Scholar

15. Zhou, Weisheng, Huaian Diao, and Hongyu Liu, "Quasi-Minnaert resonances in high-contrast acoustic structures and applications to invisibility cloaking," Journal of Computational Physics, Vol. 541, 114310, 2025.
doi:10.1016/j.jcp.2025.114310        Google Scholar

16. Boyd, Stephen, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Foundations and Trends® in Machine learning, Vol. 3, No. 1, 1-122, 2011.
doi:10.1561/2200000016        Google Scholar

17. Chen, H., X. Tian, and W. Wang, "Beampattern synthesis for conformal FDA-MIMO," Journal of Signal Processing, Vol. 39, No. 5, 793-806, 2023.
doi:10.16798/j.issn.1003-0530.2023.05.004        Google Scholar

18. Wang, W., Z. Shang, Z. Zhou, and H. Liu, "Joint convolutional analysis and synthesis sparse representation-based component substitution fusion method for remote sensing images," Journal of Signal Processing, Vol. 38, No. 3, 571-581, 2022.
doi:10.16798/j.issn.1003-0530.2022.03.015        Google Scholar

19. Song, P., S. Li, W. Zhang, W. Zheng, and L. Zhao, "Transfer discriminant regression for cross-domain speech emotion recognition," Journal of Signal Processing, Vol. 39, No. 4, 649-657, 2023.
doi:10.16798/j.issn.1003-0530.2023.04.006        Google Scholar

20. Zhang, Q., H. Zhang, J. Ni, and Y. Luo, "A survey of synthetic aperture radar imaging methods based on deep learning," Journal of Signal Processing, Vol. 39, No. 9, 1521-1551, 2023.
doi:10.16798/j.issn.1003-0530.2023.09.001        Google Scholar

21. Wen, Cai, Yan Huang, Jianxin Wu, Jinye Peng, Yan Zhou, and Jie Liu, "Cognitive antideception-jamming for airborne array radar via phase-only pattern notching with nested ADMM," IEEE Access, Vol. 7, 153660-153674, 2019.
doi:10.1109/ACCESS.2019.2948507        Google Scholar

22. Zhu, Xuanru and Jun Lai, "Recursive sparse LU decomposition based on nested dissection and low rank approximations," Journal of Computational Physics, Vol. 539, 114231, 2025.
doi:10.1016/j.jcp.2025.114231        Google Scholar

23. Guo, Laigang, Raymond W. Yeung, and Xiao-Shan Gao, "Proving information inequalities by gaussian elimination," IEEE Transactions on Information Theory, Vol. 71, No. 4, 2315-2328, 2025.
doi:10.1109/tit.2025.3531133        Google Scholar

24. Dai, Deliang, Chengcheng Hao, Shaobo Jin, and Yuli Liang, "Regularized estimation of kronecker structured covariance matrix using modified cholesky decomposition," Journal of Statistical Computation and Simulation, Vol. 95, No. 5, 905-930, 2025.
doi:10.1080/00949655.2023.2291536        Google Scholar