Vol. 94
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-20
Design of Flexible Parasitic Element Patch Antenna for Biomedical Application
By
Progress In Electromagnetics Research M, Vol. 94, 143-153, 2020
Abstract
This paper presents the design of flexible parasitic element patch (FPEP) antenna with defects on ground plane at ISM band for biomedical application. The antenna resonates at 2.46 GHz frequency with reflection coefficient of -16.8 GHz in free space and at 2.45 GHz frequency when being placed on cotton and the single layer skin tissue of human body. The proposed parasitic element patch antenna is used to measure the body temperature, and the specific absorption rate (SAR) of the proposed antennas is 1.0 W/kg. The measurement data with respect to reflection coefficient, and radiation pattern are presented.
Citation
Ketavath Kumar Naik, Seelam Chaithanya Satya Teja, Bokkisam Venkata Sailaja, and Pasumarthi Amala Sri, "Design of Flexible Parasitic Element Patch Antenna for Biomedical Application," Progress In Electromagnetics Research M, Vol. 94, 143-153, 2020.
doi:10.2528/PIERM20030406
References

1. Wong, H., W. Lin, L. Huitema, and E. Arnaud, "Multi-polarization reconfigurable Antenna for Wireless Biomedical System," IEEE Trans. on Biomed. Circuits Syst., Vol. 11, No. 3, 652-660, Jun. 2017.
doi:10.1109/TBCAS.2016.2636872

2. Li, X., M. Jalivand, Y. Sit, and T. Zwick, "A compact double-layer on-body matched bowtie antenna for medical diagnostics," IEEE Trans. on Antenna and Propag., Vol. 62, No. 4, 1808-1816, Apr. 2014.
doi:10.1109/TAP.2013.2297158

3. Liu, C., Y.-X. Guo, and S. Xiao, "Capacitively loaded circularly polarized implantable patch antenna for ISM band biomedical applications," IEEE Trans. on Antenna and Propag., Vol. 62, No. 5, 2407-2417, May 2104.
doi:10.1109/TAP.2014.2307341

4. Ketavath, K. N., D. Gopi, and S. Sandhya Rani, "In-vitro test of miniaturized CPW-fed implantable conformal patch antenna at ISM band for biomedical applications," IEEE Access, Vol. 7, 43547-43554, 2019.
doi:10.1109/ACCESS.2019.2905661

5. Lesnik, R., N. Verhovski, I. Mizrachi, B. Milgrom, and M. Haridim, "Gain enhancement of a compact implantable dipole for biomedical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 10, 1778-1782, Aug. 2018.
doi:10.1109/LAWP.2018.2866233

6. Alrawashdeh, R. S., Y. Huang, M. Kod, and A. A. B. Sajak, "A broadband flexible implantable loop antenna with complementary split ring resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1506-1509, 2015.
doi:10.1109/LAWP.2015.2403952

7. Raad, H. K., H. M. Al-Rizzo, A. Isaac, and A. I. Hammoodi, "A compact dual band polyimide based antenna for wearable and flexible telemedicine devices," Progress In Electromagnetics Research C, Vol. 63, 153-161, 2016.
doi:10.2528/PIERC16010707

8. Bao, X. L. and M. J. Ammann, "Compact annular-ring embedded circular patch antenna with cross-slot ground plane for circular polarization," Electronics Lett., Vol. 42, No. 4, Feb. 2006.
doi:10.1049/el:20064199

9. Behdad, N. and K. Sarabandi, "Wideband double-element ring slot antenna," Electronics Lett., Vol. 40, No. 7, Apr. 2004.
doi:10.1049/el:20040292

10. Terence, S., P. See, and Z. N. Chen, "Experimental characterization of UWB antennas for on-body communication," IEEE Trans. on Antenna and Propag., Vol. 57, No. 4, 866-874, Apr. 2009.

11. Abdulhasan, R. A., R. Alias, and K. N. Ramli, "A compact CPW fed UWB antenna with quad band notch characteristics for ISM band applications," Progress In Electromagnetics Research M, Vol. 62, 79-88, 2017.

12. Kurup, D., M. Scarpello, G. Vermeeren, W. Joseph, K. Dhaenens, F. Axisa, L. Martens, D. V. Ginste, H. Rogier, and J. Vanfleteren, "In-body patch loss models for implants in heterogeneous human tissues using implantable slot dipole conformal flexible antennas," EURASIP Journal on Wireless Commun. and Networking, Article number: 51 (2011), 2011.

13. Naik, K. K. and D. Gopi, "Flexible CPW-fed split-triangular shaped patch antenna for WIMAX application," Progress In Electromagnetics Research M, Vol. 70, 157-166, 2018.

14. Kang, C. H., S. J. Wu, and J. H. Tarng, "A novel folded UWB antenna for wireless body area network ," IEEE Trans. on Antenna and Propag., Vol. 60, No. 2, 1139-1142, Feb. 2012.

15. Hazanka, B., B. Basu, and J. Kumar, "A multi-layered dual-band on-body conformal integrated antenna for WBAN communication," International Journal of Electronics and Communications, Vol. 95, 226-235, Oct. 2018.

16. Kumar, V. and B. Gupta, "On-body measurements of SS-UWB patch antenna for WBAN applications," International Journal of Electronics and Communications, Vol. 70, No. 5, 668-675, May 2016.

17. Ali, S. M., V. Jeoti, T. Saeidi, and W. P. Wen, "Design of compact microstrip patch antenna for WBAN applications at ISM 2.4 GHz ," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 15, No. 3, 1509-1516, Sept. 2019.

18. Gabriel, C., Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies, King’s College, Londan, UK, 1996.

19. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.