1. Boyer, T. H., "Electrostatic potential energy leading to an inertial mass change for a system of two point charges," American Journal of Physics, Vol. 46, 383-385, Apr. 1978, doi: 10.1119/1.11328.
doi:10.1119/1.11328 Google Scholar
2. Boyer, T. H., "Energy and momentum in electromagnetic field for charged particles moving with constant velocities," American Journal of Physics, Vol. 39, 257-270, 1971, doi: 10.1119/1.1986119.
doi:10.1119/1.1986119 Google Scholar
3. Page, L. and N. I. Adams, "Action and reaction between moving charges," American Journal of Physics, Vol. 13, 141-147, 1945, doi: 10.1119/1.1990689.
doi:10.1119/1.1990689 Google Scholar
4. Pinto, F., "Resolution of a paradox in classical electrodynamics," Physical Review D - Particles, Fields, Gravitation and Cosmology, Vol. 73, 1-8, 2006, doi: 10.1103/PhysRevD.73.104020. Google Scholar
5. Steane, A. M., "Nonexistence of the self-accelerating dipole and related questions," Physical Review D, Vol. 89, 125006, Jun. 2014, doi: 10.1103/PhysRevD.89.125006.
doi:10.1103/PhysRevD.89.125006 Google Scholar
6. Cavalleri, G. and G. Spinelli, "Inertial mass and potential energy," Lettere Al Nuovo Cimento Series 2, Vol. 18, 265-266, Feb. 1977, doi: 10.1007/BF02783441.
doi:10.1007/BF02783441 Google Scholar
7. Assis, A. K. T., "Changing the inertial mass of a charged particle," Journal of the Physical Society of Japan, Vol. 62, 1418-1422, May 1993, doi: 10.1143/JPSJ.62.1418.
doi:10.1143/JPSJ.62.1418 Google Scholar
8. Assis, A. K. T., Weber's Electrodynamics, Springer, 1994, doi: 10.1007/978-94-017-3670-1.
doi:10.1007/978-94-017-3670-1
9. Sapozhnikov, V. B., "On the effective mass of an electron surrounded by a charged shell," Il Nuovo Cimento B, Vol. 108, 481-490, 1993.
doi:10.1007/BF02742806 Google Scholar
10. Özer, M., "Electrostatic time dilation and redshift," Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, Vol. 802, 135212, 2020, doi: 10.1016/j.physletb.2020.135212. Google Scholar
11. Tajmar, M. and A. K. T. Assis, "Particles with negative mass: Production, properties and applications for nuclear fusion and self-acceleration," Journal of Advanced Physics, Vol. 4, 77-82, Mar. 2015, doi: 10.1166/jap.2015.1159.
doi:10.1166/jap.2015.1159 Google Scholar
12. Assis, A. K. T., "Circuit theory in weber electrodynamics," European Journal of Physics, Vol. 18, 241-246, May 1997, doi: 10.1088/0143-0807/18/3/020.
doi:10.1088/0143-0807/18/3/020 Google Scholar
13. Smith, R. T., F. P. M. Jjunju, and S. Maher, "Evaluation of electron beam deflections across a solenoid using Weber-Ritz and Maxwell-Lorentz electrodynamics," Progress In Electromagnetics Research, Vol. 151, 83-93, 2015.
doi:10.2528/PIER15021106 Google Scholar
14. Smith, R. T. and S. Maher, "Investigating electron beam deflections by a long straight wire carrying a constant current using direct action, emission-based and field theory approaches of electrodynamics," Progress In Electromagnetics Research B, Vol. 75, 79-89, 2017.
doi:10.2528/PIERB17021103 Google Scholar
15. Baumgärtel, C., R. T. Smith, and S. Maher, "Accurately predicting electron beam deflections in fringing fields of a solenoid," Scientific Reports, Vol. 10, 1-13, 2020, doi: 10.1038/s41598-020-67596-0.
doi:10.1038/s41598-020-67596-0 Google Scholar
16. Mikhailov, V. F., "The action of an electrostatic potential on the electron mass," Annales de la Fondation Louis de Broglie, Vol. 24, 161-169, 1999. Google Scholar
17. Mikhailov, V. F., "Influence of a field-less electrostatic potential on the inertial electron mass," Annales de la Fondation Louis de Broglie, Vol. 28, 231-236, 2003. Google Scholar
18. Junginger, J. E. and Z. D. Popovic, "An experimental investigation of the influence of an electrostatic potential on electron mass as predicted by Weber's Force law," Canadian Journal of Physics, Vol. 82, 731-735, 2004, doi: 10.1139/p04-046.
doi:10.1139/p04-046 Google Scholar
19. Little, S., H. Puthoff, and M. Ibison, "Investigation of Weber's electrodynamics,", available: https://pdfhall.com/investigation-of-webers-electrodynamics-exvacuo_5b744a91097c471a4a8b45e0.html, 2001. Google Scholar
20. Lörincz, I. and M. Tajmar, "Experimental investigation of the influence of spatially distributed charges on the inertial mass of moving electrons as predicted by Weber's electrodynamics," Canadian Journal of Physics, Vol. 7, cjp-2017-0034, May 2017, doi: 10.1139/cjp-2017-0034. Google Scholar
21. Mikhailov, V. F., "Influence of an electrostatic potential on the inertial electron mass," Annales de la Fondation Louis de Broglie, Vol. 26, 633-638, 2001. Google Scholar
22. Weikert, M. and M. Tajmar, "Investigation of the influence of a field-free electrostatic potential on the electron mass with Barkhausen-Kurz oscillation," Annales de la Fondation Louis de Broglie, Vol. 44, 23-37, 2019. Google Scholar
23. Yatsenko, V. A., "On the effect of the charged shell on the mass of the electron," J. Samara State Tech. Univ., Ser. Phys. Math. Sci., Vol. 38, 178-179, Oct. 2005, doi: 10.14498/vsgtu401. Google Scholar
24. 3B Scientific "Perrin Tube D 1000650,", available: https://www.3bscientific.de/product-manual/1000650_EN.pdf. Google Scholar
25. Phipps, T. E., "Toward modernization of Weber's force law," Physics Essays, Vol. 3, 414-420, Dec. 1990, doi: 10.4006/1.3033457.
doi:10.4006/1.3033457 Google Scholar
26. Caluzi, J. J. and A. K. T. Assis, "An analysis of Phipps's potential energy," Journal of the Franklin Institute, Vol. 332, 747-753, 1995, doi: 10.1016/0016-0032(95)00071-2.
doi:10.1016/0016-0032(95)00071-2 Google Scholar
27. Wesley, J. P., "Weber electrodynamics: Part III. Mechanics, gravitation," Foundations of Physics Letters, Vol. 3, 581-605, Dec. 1990, doi: 10.1007/BF00666027.
doi:10.1007/BF00666027 Google Scholar
28. Schrödinger, E., "The possibility of fulfillment of the relativity requirement in classical mechanics," Annalen der Physik, Vol. 77, 325-336, 1925.
doi:10.1002/andp.19253821109 Google Scholar