Vol. 119
Latest Volume
All Volumes
PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-09-17
PIER M
Vol. 119, 63-73, 2023
download: 60
Wideband Circularly Polarized Planar Antenna for X-Band Applications
May Abd Elazeem Abo-Elhassan , Asmaa Elsayed Farahat and Khalid Fawzy Ahmed Hussein
A wide band circularly polarized planar antenna of high radiation efficiency is proposed in the present work for future generations of wireless communications requiring circular polarization in the X-band of the microwave spectrum. The main radiating part of the antenna is a rectangular turn-shaped strip that is capacitively loaded by two corner-shaped parasitic elements. The antenna is fed through coplanar waveguide (CPW) region whose ground structure is defected by etching two rectangular annular slots. The purposes of both the corner-shaped parasitic elements and the rectangular annular slots of the CPW ground plane are to increase the impedance matching and the 3 dB axial ratio (AR) bandwidth, and to enhance the antenna efficiency. The design is achieved through complete parametric study to find the optimum dimensions of the antenna. A prototype of the proposed antenna is fabricated for experimental assessment of its performance. The results obtained by both simulation and experimental measurements show that the impedance matching bandwidth is about 5.3 GHz (8-13.3 GHz); the 3 dB AR bandwidth is about 3.1 GHz (8-11.1 GHz); the maximum gain ranges from 4.5 to 5.5 dBi; and the radiation efficiency is higher than 98% over the operational frequency band.
Wideband Circularly Polarized Planar Antenna for X-band Applications
2023-09-14
PIER M
Vol. 119, 51-62, 2023
download: 74
Investigation on Performance of Four Port MIMO Antenna Using Electromagnetic Band Gap for 5G Communication
Govindarao Tamminaina and Ramesh Manikonda
In order to support 5G communication, this article suggests a small, four-port MIMO antenna with a G slot. This antenna has an electromagnetic band gap (EBG) in the shape of an S that is engraved on the substrate in the space between consecutive pairs of radiating patches. The recommended MIMO antenna is constructed from an FR4 substrate and measures 48x48x1.6 mm3. Between antenna elements 1 and 2, the integrated EBG structure of the MIMO antenna can reduce mutual coupling by 10.5 dB. The suggested four port G slot MIMO antenna with an S-shaped EBG structure displays the performance in terms of ECC less than 0.0002 and diversity gain larger than 9.99 with consistent frequency band extending from 3.3 GHz to 3.7 GHz. The proposed four port MIMO antenna is designed using HFSS software, and its simulation results are measured using anritsu combinational analyzer MS2037C vector network analyzer.
Investigation on Performance of Four Port MIMO Antenna Using Electromagnetic Band Gap for 5G Communication
2023-09-14
PIER M
Vol. 119, 37-50, 2023
download: 120
Star Shaped Fractal Conformal MIMO Antenna for WLAN, Vehicular and Satellite Applications
Chiranjeevi Reddy Sereddy and Usha Devi Yalavarthi
A compact and novel star shaped fractal microstrip patch conformal MIMO antenna suitable for WLAN, vehicular communications (5.855-5.925 GHz) and Fixed Satellite Services (FSS) applications is proposed in this paper. Analysis of planar and conformal single element and four element MIMO antennas is presented. Proposed star shaped fractal MIMO antenna is prototyped on Polyamide substrate of geometry 104 x 30 x 0.4 mm3. It achieved an impedance bandwidth (S11 < -10 dB) of 3.7 GHz operating from 4.53-7.86 GHz. Radiation patterns and surface current distribution are investigated at 5.9 GHz and 7.3 GHz center frequencies. A peak gain of 5.42 dB and 4.86 dB are obtained at 5.9 GHz and 7.3 GHz respectively. Radiation efficiency is more than 98% and MIMO performance parameters are also analyzed. Proposed conformal MIMO antenna showsfine diversity performance for WLAN, vehicular and FSS communications.
Star Shaped Fractal Conformal MIMO Antenna for WLAN, Vehicular and Satellite Applications
2023-09-14
PIER M
Vol. 119, 25-35, 2023
download: 44
H -Matrix Solver for the Acceleration of Boundary Integral Equation for Photonic Crystal Fiber
Jean-René Poirier , Julien Vincent , Priscillia Daquin , Ronan Perrussel and Han Cheng Seat
A waveguide mode solver based on boundary integral equation (BIE) method and matrix compression is developed in this study. Using an accurate discretization based on a Nystrom method and a kernel-splitting technique, the BIE method gives rise to three different formulations of a nonlinear eigenvalue problem. H-matrices are used in order to accelerate and increase the precision of the subsequent computations. Results from these investigations on a canonical photonic crystal fiber (PCF) chosen as an example demonstrate that the data sparse representation of the BIE discretization reduces the memory storage, as well as the assembly and solution times.
H-matrix Solver for the Acceleration of Boundary Integral Equation for Photonic Crystal Fiber
2023-09-12
PIER M
Vol. 119, 13-24, 2023
download: 628
Dual-Band 4-Port Vivaldi MIMO Antenna for 5G mmWave Applications at 28/39 GHz
Golla Ramyasree and Nelaturi Suman
A compact new dual band 4-port Vivaldi MIMO (Multiple-Input-Multiple-Output) antenna is designed for 5G mmWave applications. The proposed MIMO antenna resonates at two frequencies 28 GHz and 39 GHz, and it has dimensions 22x22x0.79 mm3. The Vivaldi structure etched on ground plane acts as a defected ground structure (DGS). The proposed antenna is fabricated on Rogers RT/duroid 5880 material having 0.79 mm thickness and 2.2 dielectric material. For high frequency and broad band applications RT/duroid material is suited to maintain low dielectric loss, and it works in high temperature places also. For the proposed four port Vivaldi MIMO antenna, the isolation between any two antenna elements is obtained below -21.59 dB. The bandwidths achieved for two bands are 4.64 GHz (26.31-30.95 GHz) at 28 GHz resonant frequency and 2.69 GHz (38.35-41.04 GHz) at 39 GHz resonant frequency for 4-port MIMO antenna. The gain achieved at 28 GHz is 5.65 dB and at 39 GHz is 5.53 dB. It is possible to achieve MIMO performance parameters such as ECC < 0.003, DG = 10, CCL < 0.4 (bits/s/Hz), TARC < -10 dB, and MEG ratio is 1.01. Simulated and measured results are compared, and the antenna is designed using ansys HFSS tool.
Dual-band 4-port Vivaldi MIMO Antenna for 5G mmWave Applications at 28/39 GHz
2023-09-06
PIER M
Vol. 119, 1-12, 2023
download: 132
Design of a Metasurface Inspired Circularly Polarized Dual-Band Compact Antenna for Biomedical Applications
Umhara Rasool , Javaid Ahmad Sheikh , Shazia Ashraf and Gh. Jeelani Qureshi
In this communication, a compact metasurface-based circularly polarized antenna with inverted L-shaped slots engraved in the ground is proposed for biomedical applications. The prospective antenna operates in the two frequency bands covering Medical Device Radio Service (Med Radio) and Industrial, Scientific, and Medicine (ISM) bands with center frequencies of 2.45 GHz and 4.1 GHz respectively. On mounting the prototype on the body, the impedance bandwidth of 14.4% and 42.5%, peak gain of 3.04 dB, and AR bandwidth of 0.3 GHz and 1.1 GHz in the two frequency bands (2.31-2.67 GHz and 3.28-5.04 GHz) are obtained respectively. For validating the prospective design, an antenna with the size of 0.264λ0 × 0.264λ0 × 0.014λ0 was fabricated on a Rogers RT/Duroid 6002 substrate and measurements were done in different scenarios. Link budget analysis of the device was also done for ensuring its communication ability.
Design of a Metasurface Inspired Circularly Polarized Dual-band Compact Antenna for Biomedical Applications