Vol. 6
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-03-11
The Sycle Slipping Phenomenon and the Degeneration Effect of Guided-Wave Modes
By
Progress In Electromagnetics Research M, Vol. 6, 75-90, 2009
Abstract
A model of the ring waveguide of a fixed cross-section and variable distribution of the surface impedance of waveguide's wall has been considered. For a class of circular hodographs of surface impedance the analytical solution of the corresponding boundary-value problem has been obtained. This solution has been used for simulating a 'cycle slipping' phenomenon, known from the observations of VLF signals propagating over long paths in the earth-ionosphere waveguide, with the goal of clarifying the cause for its initiation. Numerical experiments have shown that this phenomenon, in the context of the model in question, is a consequence of the interconversion of two dominant waveguide modes in circumstances where their propagation constants are close.
Citation
Leonid A. Pazynin, "The Sycle Slipping Phenomenon and the Degeneration Effect of Guided-Wave Modes," Progress In Electromagnetics Research M, Vol. 6, 75-90, 2009.
doi:10.2528/PIERM08121606
References

1. Johler, J. R. and L. A. Berry, Propagation Radio Waves at Frequencies Below 300 kc/s, Pergamon Press, 1964.

2. Alpert, Ya. L., E. G. Guseva, and D. S. Fligel, Propagation of Low-frequency Electromagnetic Waves in the Earth-ionosphere Waveguide, Nauka, 1967 (in Russian).

3. Makarov, G. I., V. V. Novikov, and A. B. Orlov, "The current status of research on the VLF propagation in the earth-ionosphere waveguide," Izv. Vuzov. Radiofizika, Vol. 13, No. 3, 321-355, 1970 (in Russian).        Google Scholar

4. Simpson, J. J. and A. Taflove, "A review of progress in FDTD Maxwell’s equations modeling of impulsive subionospheric propagation below 300KHz," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1582-1590, 2007.
doi:10.1109/TAP.2007.897138        Google Scholar

5. Lynn, K. W., "Multisite observations of the VLF transequatorial propagation anomaly," Radio Science, Vol. 4, No. 3, 203-212, 1969.
doi:10.1029/RS004i003p00203        Google Scholar

6. Walker, D., "Phase steps and amplitude fading of VLF signals at dawn and dusk ," Radio Science, Vol. 69D, No. 11, 1435-1443, 1965.        Google Scholar

7. Bahar, E. and J. R. Wait, "Propagation in a model terrestrial waveguide of nonuniform height: Theory and experiment," Radio Science, Vol. 69D, No. 11, 1445-1463, 1965.        Google Scholar

8. Wait, J. R., "Mode conversion and refraction effects in the earth-ionosphere waveguide for VLF radio waves," Journal of Geophysical Research, Vol. 73, No. 11, 3537-3548, 1968.
doi:10.1029/JA073i011p03537        Google Scholar

9. Katsenelenbaum, B. Z., The Theory of Irregular Waveguides with Slowly Varying Parameters, Academy of Science Press, 1961 (in Russian).

10. Bolotovskii, Ya. E. and G. I. Makarov, "Intersection of VLF-signal path and the ‘day-night’ boundary," Problems of Diffraction and Wave Propagation, No. 11, 142-158, Leningrad State University Press, Leningrad, 1972 (in Russian).        Google Scholar

11. Pappert, R. A. and J. A. Ferguson, "VLF/LF mode conversion model calculations for air to air transmissions in the earth-ionosphere waveguide ," Radio Science, Vol. 21, No. 4, 551-558, 1986.
doi:10.1029/RS021i004p00551        Google Scholar

12. Budden, K. G., "The critical coupling of modes in a tapered earth-ionosphere wave guide ," Math. Proc. Camb. Phil. Soc., Vol. 77, 567-580, 1975.
doi:10.1017/S0305004100051392        Google Scholar

13. Krasnushkin, P. Ye. and Ye. N. Fedorov, "About multiplicity of wave numbers of normal modes in stratified media," Radiotekhnika i Elektronika, Vol. 17, No. 6, 1129-1140, 1972 (in Russian).        Google Scholar

14. Westerlund, S. and F. H. Reder, "VLF radio signal propagating over the Greenland ice-sheet," JATP, Vol. 35, No. 8, 1973.        Google Scholar

15. Tyras, G., Radiation and Propagation of Electromagnetic Waves, Academic Press, 1969.

16. Gakhov, F. D. and Yu. I. Cherskii, Convolution Equations, Nauka, 1978 (in Russian).

17. Makarov, G. I., V. V. Novikov, and S. T. Rybachek, Radiowave Propagation in the Earth-ionosphere Waveguide and in the Ionosphere, Nauka, 1994 (in Russian).

18. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, Englewood Cliffs, 1973.

19. Keller, J. B., S. I. Rubinow, and M. Goldstein, "Zeros of Hankel functions and poles of scattering amplitudes," Journal of Mathematical Physics, Vol. 4, No. 6, 829-832, 1963.
doi:10.1063/1.1724325        Google Scholar

20. Paknys, R., "Evaluation of Hancel functions with complex argument and complex order," IEEE Trans. Antennas Propag., Vol. 40, No. 5, 569-578, 1992.
doi:10.1109/8.142635        Google Scholar

21. Tian, Y. B. and J. Qian, "Ultraconveniently finding multiple solutions of complex transcendental equations based on genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 475-488, 2006.
doi:10.1163/156939306776117090        Google Scholar

22. Hanson, G. W. and A. B. Yakovlev, "Investigation of mode interaction on planar dielectric waveguides with loss and gain," Radio Science, Vol. 34, No. 6, 1349-1359, Nov.-Dec. 1999.
doi:10.1029/1999RS900096        Google Scholar