Vol. 16
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-01-05
Effects of Random Errors Upon Effective Permittivity of a Composite Containing Short Needles
By
Progress In Electromagnetics Research M, Vol. 16, 117-131, 2011
Abstract
A composite medium containing perfectly conducting short needles can have a range of frequency for which the real part of the effective permittivity of the composite is negative. Such a range of frequency can be taken as negative bandwidth. This negative bandwidth for a composite medium is dependent upon parameters like positioning, orientation, length and needle density of short needles. Effects of random errors in positioning and orientation of short needles upon the ensemble averaged effective permittivity are analyzed. It is studied theoretically that increasing error in positioning and orientation of short needles reduces negative bandwidth.
Citation
Zeshan Akbar Awan Azhar Abbas Rizvi , "Effects of Random Errors Upon Effective Permittivity of a Composite Containing Short Needles," Progress In Electromagnetics Research M, Vol. 16, 117-131, 2011.
doi:10.2528/PIERM10100308
http://www.jpier.org/PIERM/pier.php?paper=10100308
References

1. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containing elongated coducting inclusions," Physical Review B, Vol. 53, No. 10, 6318-6336, 1996.
doi:10.1103/PhysRevB.53.6318

2. Moses, C. A. and N. Engheta, "Electromagnetic wave propagation in the wire medium: A complex medium with long thin inclusions," Wave Motion, Vol. 34, 301-317, 2001.
doi:10.1016/S0165-2125(01)00095-6

3. Makhnovskiy, D. P. and L. V. Panina, "Field dependent permittivity of composite materials containing ferromagnetic wires," Journal of Applied Physics, Vol. 93, No. 7, 4120-4129, 2003.
doi:10.1063/1.1557780

4. Matitsine, S. M. , K. M. Hock, L. Liu, Y. B. Gan, A. N. Lagarkov, and K. N. Rozanov, "Shift of resonance frequency of long conducting fibers embedded in a composite," Journal of Applied Physics, Vol. 94, No. 2, 1146-1154, 2003.
doi:10.1063/1.1577395

5. Liu, L., S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, "Effective permittivity of planar composites with randomly or periodically distributed coducting fibers," Journal of Applied Physics, Vol. 98, 063512, 2005.
doi:10.1063/1.2035895

6. Belov, P. A. , S. A. Tretyakov, and A. J. Viitanen, "Dispersion and re°ection properties of artificial media formed by regular lattices of ideally conducting wires," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 1153-1170, 2002.
doi:10.1163/156939302X00688

7. Deshpande, V. M. and M. D. Deshpande, "Study of electro-magnetic wave propagation through dielectric slab doped randomly with thin metallic wires using finite element method," IEEE Microwave and Wireless Component Letters, Vol. 15, No. 5, May 2005.
doi:10.1109/LMWC.2005.847663

8. Ozbay, E., K. Aydin, E. Cubukcu, and M. Bayindir, "Transmission and reflection properties of composite double negative metmaterials in free space," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2592-2595, Oct. 2003.
doi:10.1109/TAP.2003.817570

9. Koschny, T., P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E, Vol. 68, 065602-1, 2003.
doi:10.1103/PhysRevE.68.065602

10. Koschny, T., M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left handed materials," Physical Review Letters, Vol. 93, No. 10, 107402-1, Sep. 2004.
doi:10.1103/PhysRevLett.93.107402

11. Fu, Q. and X. Zhao, "The bianisotropic medium model for left-handed metamaterials and numerical calculation of negative electromagnetic parameers," Physica B, Vol. 404, 1045-1052, Sep. 2009.
doi:10.1016/j.physb.2008.11.030

12. Awan , Z. A. and A. A. Rizvi, "Effects of random positioning errors upon electromagnetic characteristics of a wire grid," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 351-364, 2011.
doi:10.1163/156939311794362768

13. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley and Sons Inc., New York, 1999.

14. Awan, Z. A. and A. A. Rizvi, "Random errors modelling and their e®ects upon RCS for an artificial object containing thin long PEC needles," Progress In Electromagnetics Research M, Vol. 7, 149-164, 2009.
doi:10.2528/PIERM09042703

15. Balanis, C. A., Antenna Theory, Analysis and Design, 2nd Ed., John Wiley and Sons Inc., New York, 1997.

16. Tretyakov, S. A. , S. Maslovski, and P. A. Belov, "An analytical model of metamaterials based on loaded wire dipoles," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2652-2658, Oct. 2003.
doi:10.1109/TAP.2003.817557

17. Tretyakov, S. A., Analytical Modeling in Applied Electromagnetics, Artech House Inc., Norwood, MA, 2003.

18. Silveirinha, M. G., "Generalized Lorentz-Lorenz formulas for microstructured materials," Physical Review B, Vol. 76, 245117-1, 2007.
doi:10.1103/PhysRevB.76.245117

19. Collin, R. E., "Field Theory of Guided Waves," IEEE Press, 1990.

20. Lathi, B. P., "Modern Digital and Analog Communication Systems," Oxford University Press, 703{-705, Mar. 1998.

21. Bender, C. M. and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Chap. 6, McGraw Hill Book Company Inc., New York, 1978.

22. Gradshteyn, I. S. and I. M. Ryzhik, Tables of Integrals, Series and Products, 7th Ed., Sec. 9.5, Academic Press, Burlington, MA, USA, 2007.

23. Heldring, A., E. Ubeda, and J. M. Rius, "Effecient computation of the effect of wire ends in thin wire analysis," IEEE Trans. Antennas and Propagation, Vol. 54, No. 10, 250-259, 2006.
doi:10.1109/TAP.2006.882194