Vol. 22
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-11-15
Device Simulation of Effects of Microwave Electromagnetic Interference on CMOS Rs Flip-Flops
By
Progress In Electromagnetics Research M, Vol. 22, 27-39, 2012
Abstract
The study on effects of microwave electromagnetic interference on CMOS RS flip-flops is reported in this paper. Using device simulation method, the relation between the susceptibility of CMOS RS flip-flops and microwave electromagnetic interference frequency as well as pulse width has been analyzed. It is found that the effects of microwave electromagnetic interference get suppressed gradually with increasing frequency. Furthermore, the interference power threshold is inversely proportional to the pulse width, and the interference energy threshold is directly proportional to the pulse width conversely. In addition, because of the difference in the structure of these two categories of CMOS RS flip-flops, they have different susceptibility to microwave electromagnetic interference.
Citation
Jie Chen, and Zhengwei Du, "Device Simulation of Effects of Microwave Electromagnetic Interference on CMOS Rs Flip-Flops," Progress In Electromagnetics Research M, Vol. 22, 27-39, 2012.
doi:10.2528/PIERM11090806
References

1. Backstrom, M. G. and K. G. Lovstrand, "Susceptibility of electronic systems to high-power microwaves: Summary of test experience," IEEE Trans. Electromag. Compat., Vol. 46, No. 3, 396-404, 2004.
doi:10.1109/TEMC.2004.831814        Google Scholar

2. Nitsch, D., M. Camp, F. Sabath, et al. "Susceptibility of some electronic equipment to HPEM threats," IEEE Trans. Electromag. Compat., Vol. 46, No. 3, 380-390, 2004.
doi:10.1109/TEMC.2004.831842        Google Scholar

3. Hoad, R., N. J. Carter, D. Herke, et al., "Trends in EM susceptibility of IT equipment," IEEE Trans. Electromag. Compat., Vol. 46, No. 3, 390-396, 2004.
doi:10.1109/TEMC.2004.831815        Google Scholar

4. Kim, K. and A. A. Iliadis, "Critical upsets of CMOS inverters in static operation due to high-power microwave interference," IEEE Trans. Electromag. Compat., Vol. 49, No. 4, 876-885, 2007.
doi:10.1109/TEMC.2007.908820        Google Scholar

5. Kim, K. and A. A. Iliadis, "Impact of microwave interference on dynamic operation and power dissipation of CMOS inverters," IEEE Trans. Electromag. Compat., Vol. 49, No. 2, 329-338, 2007.
doi:10.1109/TEMC.2007.893333        Google Scholar

6. Wang, H., J. Li, H. Li, K. Xiao, and H. Chen, "Experimental study and spice simulation of CMOS inverters latch-up effects due to high power microwave interference," Progress In Electromagnetics Research, Vol. 87, 313-330, 2008.
doi:10.2528/PIER08100408        Google Scholar

7. Hong, J. I., S. M. Hwang, and C. S. Huh, "Susceptibility of CMOS IC devices under narrow-band high power electromagnetic waves by magnetron," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 571-582, 2009.
doi:10.1163/156939309788019813        Google Scholar

8. Wallace, R. E., S. G. Zaky, and K. G. Balmain, "Fast-transient susceptibility of a D-type flip-flop," IEEE Trans. Electromag. Compat., Vol. 37, No. 1, 75-80, 1995.
doi:10.1109/15.350243        Google Scholar

9. Kashyap, S., C. L. Gardner, and J. A. Walsh, "Upset of a flip-flop based counting circuit by EM transients," IEEE International Symposium on Electromagnetic Compatibility, Vol. 1, 233-238, 2001.        Google Scholar

10. Chahine, I., M. Kadi, E. Gaboriaud, A. Louis, and B. Mazari, "Characterization and modeling of the susceptibility of integrated circuits to conducted electromagnetic disturbances up to 1 GHz," IEEE Trans. Electromag. Compat., Vol. 50, No. 2, 285-293, May 2008.
doi:10.1109/TEMC.2008.918983        Google Scholar

11. Chahine, I., M. Kadi, E. Gaboriaud, X. Gallenne, A. Louis, and B. Mazari, "Enhancement of accuracy for measuring the susceptibility of integrated circuits to conducted electromagnetic disturbances," IET Sci. Meas. Technol., Vol. 1, No. 5, 240-244, Sep. 2007.
doi:10.1049/iet-smt:20060142        Google Scholar

12. Chahine, I., M. Kadi, E. Gaboriaud, C. Maziere, A. Louis, and B. Mazari, "Modeling of integrated circuits susceptibility to conducted continuous wave interference using neural networks," IET Electron. Lett., Vol. 42, No. 18, 1022-1024, Aug. 2006.
doi:10.1049/el:20061903        Google Scholar

13. Alaeldine, R. P., M. Ramdani, J.-L. Levant, and M. Drissi, "A direct power injection model for immunity prediction in integrated circuits," IEEE Trans. Electromag. Compat., Vol. 50, No. 1, 52-62, Feb. 2008.
doi:10.1109/TEMC.2007.911920        Google Scholar

14. Xi, C. and Z. Du, "Effect of pulse repetition frequency on the semiconductor devices burnout caused by microwave pulses," International Review of Electrical Engineering --- IREE, Vol. 5, No. 5, 2500-2507, 2010.        Google Scholar

15. MEDICI (TM), Version A-2008.09-0, , Synopsys, Inc.        Google Scholar

16. Kim, K. and A. A. Iliadis, "Latch-up effects in CMOS inverters due to high power pulsed electromagnetic interference," Solid-State Electronics, Vol. 52, No. 10, 1589-1593, 2008.
doi:10.1016/j.sse.2008.06.041        Google Scholar

17. Fang, J., G. Liu, P. Li, et al. "Experimental study of the high power microwave pulse width effect," High Power Laser and Particle Beams, Vol. 19, No. 7, 1197-1202, 2007.        Google Scholar