Vol. 34
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-02-03
Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor
By
Progress In Electromagnetics Research M, Vol. 34, 171-179, 2014
Abstract
In this paper, design and simulation of optimized MEMS spiral inductor are presented. The effects of design parameters on characteristics of inductor have been considered. The suspended spiral inductor was designed on silicon substrate using MEMS technology to reduce the metal and substrate losses of inductor. The results show that the quality factor of the inductor is 27 at 5.23 GHz and that the maximum Q-factor is 42 at 26.56 GHz. The dimension of the inductor is 185×200 μm2, which occupies less area on chip than other works. In this work, the high quality factor inductor with small size is obtained.
Citation
Parsa Pirouznia, and Bahram Azizollah Ganji, "Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor," Progress In Electromagnetics Research M, Vol. 34, 171-179, 2014.
doi:10.2528/PIERM13121908
References

1. Wang, C. and N.-Y. Kim, "Analytical optimization of high-performance and high-yield spiral inductor in integrated passive device technology," Elsevier Microelectronics Journal, Vol. 43, 176-181, Jan. 2012.
doi:10.1016/j.mejo.2011.12.011

2. Sandrolini, L., U. Reggiani, and G. Puccetti, "Analytical calculation of the inductance of planar ZIG-ZAG spiral inductors," Progress In Electromagnetics Research, Vol. 142, 207-220, 2013.
doi:10.2528/PIER13071105

3. Lee, J., S. Park, H. C. Kim, and K. Chun, "Substrates and dimension dependence of MEMS inductors," IOP Science Journal of Micromechanics and Microengineering, Vol. 19, 085014, 2009.
doi:10.1088/0960-1317/19/8/085014

4. Sia, C. B., W. M. Lim, B. H. Ong, A. F. Tong, and K. S. Yeo, "Modeling and layout optimization techniques for silicon-based symmetrical spiral inductors," Progress In Electromagnetics Research, Vol. 143, 1-18, 2013.
doi:10.2528/PIER13082001

5. Dai, C.-L., J.-Y. Hong, and M.-C. Liu, "High Q-factor CMOS-MEMS inductor," Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, 138-141, Apr. 2008.

6. Fang, D.-M., Q. Yuan, X.-H. Li, H.-X. Zhang, Y. Zhou, and X.-L. Zhao, "High performance MEMS spiral inductors," The 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 1033-1035, Jan. 2010.

7. Jeong, Y., H. Doh, S. Jung, D. S.-W. Park, and J.-B. Lee, "CMOS VCO & LNA implemented by air-suspended on-chip RF MEMS LC," The 47th IEEE International Midwest Symposium on Circuits and Systems, 373-376, 2004.

8. Tseng, S.-H., Y.-J. Hung, Y.-Z. Juang, and M. S.-C. Lu, "A 5.8-GHz VCO with CMOS-compatible MEMS inductors," Elsevier Sensors and Actuators A, Vol. 139, 187-193, 2007.
doi:10.1016/j.sna.2006.12.014

9. Pan, S. J., L. W. Li, and W. Y. Yin, "Performance trends of on-chip spiral inductors for RFICs," Progress In Electromagnetics Research, Vol. 45, 123-151, 2004.
doi:10.2528/PIER03062303

10. Mohan, S. S., M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, "Simple accurate expressions for planar spiral inductances," IEEE Journal of Solid-state Circuits, Vol. 34, No. 10, 1419-1424, Oct. 1999.
doi:10.1109/4.792620

11. Zhao, P. and H. G. Wang, "Resistance and inductance extraction using surface integral equation with the acceleration of multilevel green function interpolation method," Progress In Electromagnetics Research, Vol. 83, 43-54, 2008.
doi:10.2528/PIER08032001

12. Park, E.-C., J.-B. Yoon, S. Hong, and E. Yoon, "A 2.6 GHz low phase-noise VCO monolithically integrated with high Q MEMS inductors," The 28th IEEE Solid-state Circuits Conference (ESSCIRC 2002), 147-150, Sep. 2002.

13. Gil, J. and H. Shin, "A simple wide-band on-chip inductor model for silicon-based RF ICs," IEEE Transactions on Microwave Theory Techniques, Vol. 51, No. 9, 2023-2028, Sep. 2003.
doi:10.1109/TMTT.2003.815870