1. Yeh, C. and F. I. Shimabukuro, The Essence of Dielectric Waveguides, 522, Springer Science+Business Media, LLC, 2008.
doi:10.1007/978-0-387-49799-0
2. Chen, X., G. Liu, and C. Tang, "Novel dielectric photonic-band-gap resonant cavity loaded in a gyrotron," J. Phys. D: Appl. Phys., Vol. 43, No. 40, 405101, 2010.
doi:10.1088/0022-3727/43/40/405103 Google Scholar
3. Huang, Y. J., K. R. Chu, and M. Thumm, "Self-consistent modeling of terahertz waveguide, and cavity with frequency-dependent conductivity," Physics of Plasmas, Vol. 22, No. 1, 013108, 2015.
doi:10.1063/1.4905627 Google Scholar
4. Hong, B. B., L. P. Huang, X. L. Xu, Y. X. Xia, and C. J. Tang, "Hollow core photonic crystal for terahertz gyrotron oscillator," J. Phys. D: Appl. Phys., Vol. 48, No. 4, 045104, 2015.
doi:10.1088/0022-3727/48/4/045104 Google Scholar
5. Choe, J. Y., H. S Uhm, and S. Ahn, "Analysis of the wide band gyrotron amplifier in a dielectric loaded waveguide," Journal of Applied Physics, Vol. 52, No. 7, 4508-4516, 1981.
doi:10.1063/1.329378 Google Scholar
6. Uhm, H. S., J. Y. Choe, and S. Ahn, "Theory of gyrotron amplifier in a waveguide with inner dielectric material," Int. J. Electron., Vol. 51, No. 4, 521-532, 1981.
doi:10.1080/00207218108901354 Google Scholar
7. Rao, S. J., P. K. Jain, and B. N. Basu, "Broadbanding of a gyro-TWT by dielectric-loading through dispersion shaping," IEEE Trans. Electron Devices, Vol. 43, No. 12, 2290-2299, 1996.
doi:10.1109/16.544423 Google Scholar
8. Leou, K. C., D. B. McDermott, and N. C. Luhmann, "Large-signal characteristics of a wide-band dielectric-loaded gyro-TWT amplifier," IEEE Trans. Plasma Sci., Vol. 24, No. 3, 718-726, 1996.
doi:10.1109/27.533073 Google Scholar
9. Rao, S. J., R. Jain, and B. N. Basu, "Two-stage dielectric-loading for broadbanding a gyro-TWT," IEEE Electron Device Letters, Vol. 17, No. 6, 303-305, 1996.
doi:10.1109/55.496465 Google Scholar
10. Du, C.-H., Q. Z. Xue, and P.-K. Liu, "Loss-induced modal transition in a dielectric-coated metal cylindrical waveguide for gyro-traveling-wave-tube applications," IEEE Electron Device Letters, Vol. 29, No. 11, 1256-1258, 2008.
doi:10.1109/LED.2008.2004635 Google Scholar
11. Du, C.-H. and P.-K. Liu, "Linear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit," IEEE Trans. Plasma Sci., Vol. 38, No. 6, 1219-1226, 2010.
doi:10.1109/TPS.2010.2042622 Google Scholar
12. Du, C.-H. and P.-K. Liu, "Nonlinear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit," Physics of Plasmas, Vol. 17, No. 3, 033104, 2010.
doi:10.1063/1.3339935 Google Scholar
13. Du, C. H., et al. "Design of a W-band gyro-TWT amplifier with a lossy ceramic-loaded circuit," IEEE Trans. Electron Devices, Vol. 60, No. 7, 2388-2394, 2013.
doi:10.1109/TED.2013.2264100 Google Scholar
14. Yin, Y.-Z., "The cyclotron autoresonance maser with a large-orbit electron ring in a dielectric-loaded waveguide," Int. J. Infrared Millimeter Waves, Vol. 14, No. 8, 1587-1600, 1993.
doi:10.1007/BF02096218 Google Scholar
15. Chu, K. R., A. K. Ganguly, V. L. Granatstein, J. L. Hirshfield, S. Y. Park, and J. M. Baird, "Theory of a slow wave cyclotron amplifier," Int. J. Electron., Vol. 51, No. 4, 493-502, 1981.
doi:10.1080/00207218108901352 Google Scholar
16. Lin, A. T., W. W. Chang, and K. R. Chu, "Nonlinear efficiency and bandwidth of a slow wave cyclotron amplifier," Int. J. Infrared Millimeter Waves, Vol. 5, No. 4, 427-444, 1984.
doi:10.1007/BF01010142 Google Scholar
17. Freund, H. P. and A. K. Ganguly, "Nonlinear analysis of the Cerenkov maser," Physics of Fluids B, Vol. 2, No. 10, 2506-2515, 1990.
doi:10.1063/1.859515 Google Scholar
18. Ganguly, A. K. and S. Ahn, "Nonlinear theory of the slow-wave cyclotron amplifier," Phys. Rev. A, Vol. 42, No. 6, 3544-3554, 1990.
doi:10.1103/PhysRevA.42.3544 Google Scholar
19. Vomvoridis, J. L. and M. A. Hambakis, "Non-linear analysis of the electron cyclotron maser with axial initial electron velocity," Int. J. Electron., Vol. 71, No. 1, 167-190, 1991.
doi:10.1080/00207219108925467 Google Scholar
20. Iatrou, C. T. and J. L. Vomvoridis, "Microwave excitation and amplification using cyclotron interaction with an axial electron velocity beam," Int. J. Electron., Vol. 71, No. 3, 493-510, 1991.
doi:10.1080/00207219108925495 Google Scholar
21. Vomvoridis, J. L. and C. T. Iatrou, "Linear fluid analysis of the electron cyclotron maser with axial initial electron velocity," Int. J. Electron., Vol. 71, No. 1, 145-165, 1991.
doi:10.1080/00207219108925466 Google Scholar
22. Cho, Y.-H., D.-I. Choi, and J.-S. Choi, "Electromagnetic wave amplification of cyclotron Cherenkov maser," Optics Communications, Vol. 94, No. 6, 530-536, 1992.
doi:10.1016/0030-4018(92)90600-V Google Scholar
23. Cho, Y.-H., D.-I. Choi, and J.-S. Choi, "Cyclotron Cherenkov maser amplification using the anomalous Doppler effect," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 331, No. 1, 572-576, 1993.
doi:10.1016/0168-9002(93)90112-U Google Scholar
24. Lee, C.-Y., R. Yamashita, and M. Masuzaki, "Linear analysis of cyclotron-cherenkov and cherenkov instabilities in dielectric-loaded coaxial waveguides," Int. J. Infrared Millimeter Waves, Vol. 18, No. 2, 519-535, 1997.
doi:10.1007/BF02677937 Google Scholar
25. Zhao, D. and Y. Ding, "Cerenkov and cyclotron Cerenkov instabilities in a dielectric loaded parallel plate waveguide sheet electron beam system," Physics of Plasmas, Vol. 18, No. 9, 093107, 2011.
doi:10.1063/1.3632973 Google Scholar
26. Zhao, D. and Y. Ding, "Nonlinear analysis of the dielectric loaded rectangular Cerenkov maser," Physics of Plasmas, Vol. 19, No. 2, 024508, 2012.
doi:10.1063/1.3684241 Google Scholar
27. Zhao, D. and Y. Ding, "Simplified nonlinear theory of the dielectric loaded rectangular Cerenkov maser," Chin. Phys. B, Vol. 21, No. 9, 094102, 2012.
doi:10.1088/1674-1056/21/9/094102 Google Scholar
28. Kong, L.-B., H.-Y. Wang, Z.-L. Hou, H.-B. Jin, and C.-H. Du, "The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread," Annals of Physics, Vol. 339, 588-595, 2013.
doi:10.1016/j.aop.2013.05.008 Google Scholar
29. Khalilzadeh, E., A. Chakhmachi, and B. Maraghechi, "Effect of self-fields on the electron cyclotron maser instability in a dielectric loaded waveguide," The European Physical Journal D, Vol. 69, No. 11, 256, 2015.
doi:10.1140/epjd/e2015-60254-9 Google Scholar
30. Shcherbinin, V. I., G. I. Zaginaylov, and V. I. Tkachenko, "HE and EH hybrid waves in a circular dielectric waveguide with an anisotropic impedance surface," Problems of Atomic Science and Technology. Plasma Electronics and New Methods of Acceleration, Vol. 98, 89-93, 2015. Google Scholar
31. Mohsen, A. and M. Hamid, "Wave propagation in a circular waveguide with an absorbing wall," Journal of Applied Physics, Vol. 41, No. 1, 433-434, 1970.
doi:10.1063/1.1658369 Google Scholar
32. Elsherbeni, A. Z., J. Stanier, and M. Hamid, "Eigenvalues of propagating waves in a circular waveguide with an impedance wall," IEE Proceedings H, Vol. 135, No. 1, 23-26, 1988. Google Scholar
33. Koivisto, P. K., S. A. Tretyakov, and M. I. Oksanen, "Waveguides filled with general biisotropic media," Radio Science, Vol. 28, No. 5, 675-686, 1993.
doi:10.1029/93RS00361 Google Scholar
34. Mahmoud, S. F., Electromagnetic Waveguides: Theory and Applications, 77-93, Peregrinus, 1991.
doi:10.1049/PBEW032E
35. Zhang, Q., T. Jiang, and Y. Feng, "Slow-light propagation in a cylindrical dielectric waveguide with metamaterial cladding," J. Phys. D: Appl. Phys., Vol. 44, No. 47, 475103, 2011.
doi:10.1088/0022-3727/44/47/475103 Google Scholar
36. Atakaramians, S., A. Argyros, S. Fleming, and B. Kuhlmey, "Hollow-core waveguides with uniaxial metamaterial cladding: Modal equations and guidance conditions," J. Opt. Soc. Am. B, Vol. 29, No. 9, 2462-2477, 2012.
doi:10.1364/JOSAB.29.002462 Google Scholar
37. Pollock, J. G. and A. K. Iyer, "Experimental verification of below-cutoff propagation in miniaturized circular waveguides using anisotropic ENNZ metamaterial liners," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 4, 1297-1305, 2016.
doi:10.1109/TMTT.2016.2532872 Google Scholar
38. Olver, P., Introduction to Partial Differential Equations, 123, Springer-Verlag, 2014.
doi:10.1007/978-3-319-02099-0
39. Miyagi, M. and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission," Journal of Lightwave Technology, Vol. 2, No. 2, 116-126, 1984.
doi:10.1109/JLT.1984.1073590 Google Scholar
40. Dragone, C., "Reflection, transmission and mode conversion in a corrugated feed," The Bell System Technical Journal, Vol. 56, No. 6, 835-867, 1977.
doi:10.1002/j.1538-7305.1977.tb00544.x Google Scholar
41. Li, H. and M. Thumm, "Mode coupling in corrugated waveguides with varying wall impedance and diameter change," Int. J. Electron., Vol. 71, No. 5, 827-844, 1991.
doi:10.1080/00207219108925527 Google Scholar
42. Li, H., F. Xu, and S. Liu, "Theory of harmonic gyrotron with multiconductors structure," Int. J. Electron., Vol. 65, No. 3, 409-418, 1988.
doi:10.1080/00207218808945241 Google Scholar
43. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 56-64, 1996.
doi:10.1109/22.481385 Google Scholar
44. Shcherbinin, V. I., "Eigenmodes of a gyrotron cavity with anisotropic impedance surface," Proc. of 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, 1-4, Kharkiv, Ukraine, June 20-24, 2016. Google Scholar
45. Dumbrajs, O. and G. S. Nusinovich, "Coaxial gyrotrons: Past, present and future (review)," IEEE Trans. Plasma Sci., Vol. 32, No. 3, 934-946, 2004.
doi:10.1109/TPS.2004.829976 Google Scholar
46. Yeh, C. and G. Lindgren, "Computing the propagation characteristics of radially stratified fibers: An efficient method," Appl. Opt., Vol. 16, No. 2, 483-493, 1977.
doi:10.1364/AO.16.000483 Google Scholar
47. Chou, R. C. and S. W. Lee, "Modal attenuation in multilayered coated waveguides," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 7, 1167-1176, 1988.
doi:10.1109/22.3652 Google Scholar