Vol. 53
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-01-22
Analogy Between Circular Core-Cladding and Impedance Waveguides and Their Membrane Functions
By
Progress In Electromagnetics Research M, Vol. 53, 111-120, 2017
Abstract
One-side boundary conditions on the field inside core region are obtained for core-cladding waveguide with anisotropic cladding. The boundary conditions involve two functions acting as components of anisotropic surface impedance for cladding material. These functions are determined in relation to desired values for step-index waveguide and dielectric-lined waveguide with either perfectly or finitely conducting walls. With resulting surface impedance, the perfect analogy between core-cladding and impedance waveguide is achieved. Using this analogy, independent eigenvalue problems are obtained for membrane functions of HE and EH waves of core-cladding waveguide. From this result some conclusions about electromagnetic properties of HE and EH waves are drawn.
Citation
Vitalii I. Shcherbinin, Gennadiy Ivanovich Zaginaylov, and Viktor I. Tkachenko, "Analogy Between Circular Core-Cladding and Impedance Waveguides and Their Membrane Functions," Progress In Electromagnetics Research M, Vol. 53, 111-120, 2017.
doi:10.2528/PIERM16110902
References

1. Yeh, C. and F. I. Shimabukuro, The Essence of Dielectric Waveguides, 522, Springer Science+Business Media, LLC, 2008.
doi:10.1007/978-0-387-49799-0

2. Chen, X., G. Liu, and C. Tang, "Novel dielectric photonic-band-gap resonant cavity loaded in a gyrotron," J. Phys. D: Appl. Phys., Vol. 43, No. 40, 405101, 2010.
doi:10.1088/0022-3727/43/40/405103        Google Scholar

3. Huang, Y. J., K. R. Chu, and M. Thumm, "Self-consistent modeling of terahertz waveguide, and cavity with frequency-dependent conductivity," Physics of Plasmas, Vol. 22, No. 1, 013108, 2015.
doi:10.1063/1.4905627        Google Scholar

4. Hong, B. B., L. P. Huang, X. L. Xu, Y. X. Xia, and C. J. Tang, "Hollow core photonic crystal for terahertz gyrotron oscillator," J. Phys. D: Appl. Phys., Vol. 48, No. 4, 045104, 2015.
doi:10.1088/0022-3727/48/4/045104        Google Scholar

5. Choe, J. Y., H. S Uhm, and S. Ahn, "Analysis of the wide band gyrotron amplifier in a dielectric loaded waveguide," Journal of Applied Physics, Vol. 52, No. 7, 4508-4516, 1981.
doi:10.1063/1.329378        Google Scholar

6. Uhm, H. S., J. Y. Choe, and S. Ahn, "Theory of gyrotron amplifier in a waveguide with inner dielectric material," Int. J. Electron., Vol. 51, No. 4, 521-532, 1981.
doi:10.1080/00207218108901354        Google Scholar

7. Rao, S. J., P. K. Jain, and B. N. Basu, "Broadbanding of a gyro-TWT by dielectric-loading through dispersion shaping," IEEE Trans. Electron Devices, Vol. 43, No. 12, 2290-2299, 1996.
doi:10.1109/16.544423        Google Scholar

8. Leou, K. C., D. B. McDermott, and N. C. Luhmann, "Large-signal characteristics of a wide-band dielectric-loaded gyro-TWT amplifier," IEEE Trans. Plasma Sci., Vol. 24, No. 3, 718-726, 1996.
doi:10.1109/27.533073        Google Scholar

9. Rao, S. J., R. Jain, and B. N. Basu, "Two-stage dielectric-loading for broadbanding a gyro-TWT," IEEE Electron Device Letters, Vol. 17, No. 6, 303-305, 1996.
doi:10.1109/55.496465        Google Scholar

10. Du, C.-H., Q. Z. Xue, and P.-K. Liu, "Loss-induced modal transition in a dielectric-coated metal cylindrical waveguide for gyro-traveling-wave-tube applications," IEEE Electron Device Letters, Vol. 29, No. 11, 1256-1258, 2008.
doi:10.1109/LED.2008.2004635        Google Scholar

11. Du, C.-H. and P.-K. Liu, "Linear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit," IEEE Trans. Plasma Sci., Vol. 38, No. 6, 1219-1226, 2010.
doi:10.1109/TPS.2010.2042622        Google Scholar

12. Du, C.-H. and P.-K. Liu, "Nonlinear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit," Physics of Plasmas, Vol. 17, No. 3, 033104, 2010.
doi:10.1063/1.3339935        Google Scholar

13. Du, C. H., et al. "Design of a W-band gyro-TWT amplifier with a lossy ceramic-loaded circuit," IEEE Trans. Electron Devices, Vol. 60, No. 7, 2388-2394, 2013.
doi:10.1109/TED.2013.2264100        Google Scholar

14. Yin, Y.-Z., "The cyclotron autoresonance maser with a large-orbit electron ring in a dielectric-loaded waveguide," Int. J. Infrared Millimeter Waves, Vol. 14, No. 8, 1587-1600, 1993.
doi:10.1007/BF02096218        Google Scholar

15. Chu, K. R., A. K. Ganguly, V. L. Granatstein, J. L. Hirshfield, S. Y. Park, and J. M. Baird, "Theory of a slow wave cyclotron amplifier," Int. J. Electron., Vol. 51, No. 4, 493-502, 1981.
doi:10.1080/00207218108901352        Google Scholar

16. Lin, A. T., W. W. Chang, and K. R. Chu, "Nonlinear efficiency and bandwidth of a slow wave cyclotron amplifier," Int. J. Infrared Millimeter Waves, Vol. 5, No. 4, 427-444, 1984.
doi:10.1007/BF01010142        Google Scholar

17. Freund, H. P. and A. K. Ganguly, "Nonlinear analysis of the Cerenkov maser," Physics of Fluids B, Vol. 2, No. 10, 2506-2515, 1990.
doi:10.1063/1.859515        Google Scholar

18. Ganguly, A. K. and S. Ahn, "Nonlinear theory of the slow-wave cyclotron amplifier," Phys. Rev. A, Vol. 42, No. 6, 3544-3554, 1990.
doi:10.1103/PhysRevA.42.3544        Google Scholar

19. Vomvoridis, J. L. and M. A. Hambakis, "Non-linear analysis of the electron cyclotron maser with axial initial electron velocity," Int. J. Electron., Vol. 71, No. 1, 167-190, 1991.
doi:10.1080/00207219108925467        Google Scholar

20. Iatrou, C. T. and J. L. Vomvoridis, "Microwave excitation and amplification using cyclotron interaction with an axial electron velocity beam," Int. J. Electron., Vol. 71, No. 3, 493-510, 1991.
doi:10.1080/00207219108925495        Google Scholar

21. Vomvoridis, J. L. and C. T. Iatrou, "Linear fluid analysis of the electron cyclotron maser with axial initial electron velocity," Int. J. Electron., Vol. 71, No. 1, 145-165, 1991.
doi:10.1080/00207219108925466        Google Scholar

22. Cho, Y.-H., D.-I. Choi, and J.-S. Choi, "Electromagnetic wave amplification of cyclotron Cherenkov maser," Optics Communications, Vol. 94, No. 6, 530-536, 1992.
doi:10.1016/0030-4018(92)90600-V        Google Scholar

23. Cho, Y.-H., D.-I. Choi, and J.-S. Choi, "Cyclotron Cherenkov maser amplification using the anomalous Doppler effect," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 331, No. 1, 572-576, 1993.
doi:10.1016/0168-9002(93)90112-U        Google Scholar

24. Lee, C.-Y., R. Yamashita, and M. Masuzaki, "Linear analysis of cyclotron-cherenkov and cherenkov instabilities in dielectric-loaded coaxial waveguides," Int. J. Infrared Millimeter Waves, Vol. 18, No. 2, 519-535, 1997.
doi:10.1007/BF02677937        Google Scholar

25. Zhao, D. and Y. Ding, "Cerenkov and cyclotron Cerenkov instabilities in a dielectric loaded parallel plate waveguide sheet electron beam system," Physics of Plasmas, Vol. 18, No. 9, 093107, 2011.
doi:10.1063/1.3632973        Google Scholar

26. Zhao, D. and Y. Ding, "Nonlinear analysis of the dielectric loaded rectangular Cerenkov maser," Physics of Plasmas, Vol. 19, No. 2, 024508, 2012.
doi:10.1063/1.3684241        Google Scholar

27. Zhao, D. and Y. Ding, "Simplified nonlinear theory of the dielectric loaded rectangular Cerenkov maser," Chin. Phys. B, Vol. 21, No. 9, 094102, 2012.
doi:10.1088/1674-1056/21/9/094102        Google Scholar

28. Kong, L.-B., H.-Y. Wang, Z.-L. Hou, H.-B. Jin, and C.-H. Du, "The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread," Annals of Physics, Vol. 339, 588-595, 2013.
doi:10.1016/j.aop.2013.05.008        Google Scholar

29. Khalilzadeh, E., A. Chakhmachi, and B. Maraghechi, "Effect of self-fields on the electron cyclotron maser instability in a dielectric loaded waveguide," The European Physical Journal D, Vol. 69, No. 11, 256, 2015.
doi:10.1140/epjd/e2015-60254-9        Google Scholar

30. Shcherbinin, V. I., G. I. Zaginaylov, and V. I. Tkachenko, "HE and EH hybrid waves in a circular dielectric waveguide with an anisotropic impedance surface," Problems of Atomic Science and Technology. Plasma Electronics and New Methods of Acceleration, Vol. 98, 89-93, 2015.        Google Scholar

31. Mohsen, A. and M. Hamid, "Wave propagation in a circular waveguide with an absorbing wall," Journal of Applied Physics, Vol. 41, No. 1, 433-434, 1970.
doi:10.1063/1.1658369        Google Scholar

32. Elsherbeni, A. Z., J. Stanier, and M. Hamid, "Eigenvalues of propagating waves in a circular waveguide with an impedance wall," IEE Proceedings H, Vol. 135, No. 1, 23-26, 1988.        Google Scholar

33. Koivisto, P. K., S. A. Tretyakov, and M. I. Oksanen, "Waveguides filled with general biisotropic media," Radio Science, Vol. 28, No. 5, 675-686, 1993.
doi:10.1029/93RS00361        Google Scholar

34. Mahmoud, S. F., Electromagnetic Waveguides: Theory and Applications, 77-93, Peregrinus, 1991.
doi:10.1049/PBEW032E

35. Zhang, Q., T. Jiang, and Y. Feng, "Slow-light propagation in a cylindrical dielectric waveguide with metamaterial cladding," J. Phys. D: Appl. Phys., Vol. 44, No. 47, 475103, 2011.
doi:10.1088/0022-3727/44/47/475103        Google Scholar

36. Atakaramians, S., A. Argyros, S. Fleming, and B. Kuhlmey, "Hollow-core waveguides with uniaxial metamaterial cladding: Modal equations and guidance conditions," J. Opt. Soc. Am. B, Vol. 29, No. 9, 2462-2477, 2012.
doi:10.1364/JOSAB.29.002462        Google Scholar

37. Pollock, J. G. and A. K. Iyer, "Experimental verification of below-cutoff propagation in miniaturized circular waveguides using anisotropic ENNZ metamaterial liners," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 4, 1297-1305, 2016.
doi:10.1109/TMTT.2016.2532872        Google Scholar

38. Olver, P., Introduction to Partial Differential Equations, 123, Springer-Verlag, 2014.
doi:10.1007/978-3-319-02099-0

39. Miyagi, M. and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission," Journal of Lightwave Technology, Vol. 2, No. 2, 116-126, 1984.
doi:10.1109/JLT.1984.1073590        Google Scholar

40. Dragone, C., "Reflection, transmission and mode conversion in a corrugated feed," The Bell System Technical Journal, Vol. 56, No. 6, 835-867, 1977.
doi:10.1002/j.1538-7305.1977.tb00544.x        Google Scholar

41. Li, H. and M. Thumm, "Mode coupling in corrugated waveguides with varying wall impedance and diameter change," Int. J. Electron., Vol. 71, No. 5, 827-844, 1991.
doi:10.1080/00207219108925527        Google Scholar

42. Li, H., F. Xu, and S. Liu, "Theory of harmonic gyrotron with multiconductors structure," Int. J. Electron., Vol. 65, No. 3, 409-418, 1988.
doi:10.1080/00207218808945241        Google Scholar

43. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 56-64, 1996.
doi:10.1109/22.481385        Google Scholar

44. Shcherbinin, V. I., "Eigenmodes of a gyrotron cavity with anisotropic impedance surface," Proc. of 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, 1-4, Kharkiv, Ukraine, June 20-24, 2016.        Google Scholar

45. Dumbrajs, O. and G. S. Nusinovich, "Coaxial gyrotrons: Past, present and future (review)," IEEE Trans. Plasma Sci., Vol. 32, No. 3, 934-946, 2004.
doi:10.1109/TPS.2004.829976        Google Scholar

46. Yeh, C. and G. Lindgren, "Computing the propagation characteristics of radially stratified fibers: An efficient method," Appl. Opt., Vol. 16, No. 2, 483-493, 1977.
doi:10.1364/AO.16.000483        Google Scholar

47. Chou, R. C. and S. W. Lee, "Modal attenuation in multilayered coated waveguides," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 7, 1167-1176, 1988.
doi:10.1109/22.3652        Google Scholar