Vol. 56
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-16
A Rank-(L, L, 1) BCD Based AOA-Polarization Joint Estimation Algorithm for Electromagnetic Vector Sensor Array
By
Progress In Electromagnetics Research M, Vol. 56, 25-32, 2017
Abstract
This paper investigates an angle of arrival (AOA) and polarization joint estimation algorithm for an L-shaped electromagnetic vector sensor array based on rank-(L, L, 1) block component decomposition (BCD) tensor modeling. The proposed algorithm can take full advantage of the multidimensional information of electromagnetic signal to obtain the parameter estimation more accurately than the matrix-based method and the existing tensor decomposition method. In addition, the algorithm can accomplish pair-matching of estimated parameters automatically. The numerical experiments demonstrate that even under the conditions of low SNR and limited snapshots, the proposed algorithm can still steadily achieve high detection probability with low estimation error, which is important for practical applications.
Citation
Yu-Fei Gao, and Qun Wan, "A Rank-(L, L, 1) BCD Based AOA-Polarization Joint Estimation Algorithm for Electromagnetic Vector Sensor Array," Progress In Electromagnetics Research M, Vol. 56, 25-32, 2017.
doi:10.2528/PIERM17020802
References

1. Nehorai, A. and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," IEEE Trans. Signal Process., Vol. 42, No. 2, 376-398, Feb. 1994.
doi:10.1109/78.275610        Google Scholar

2. Tan, K.-C., K.-C. Ho, and A. Nehorai, "Linear independence of steering vectors of an electromagnetic vector sensor," IEEE Trans. Signal Process., Vol. 44, No. 12, 3099-3107, Dec. 1996.
doi:10.1109/78.553483        Google Scholar

3. Wong, K. T. and M. D. Zoltowski, "Uni-vector-sensor esprit for multisource azimuth, elevation, and polarization estimation," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1467-1474, 1997.
doi:10.1109/8.633852        Google Scholar

4. Cichocki, A., D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan, "Tensor decompositions for signal processing applications: From two-way to multiway component analysis," IEEE Signal Process. Mag., Vol. 32, No. 2, 145-163, 2015.
doi:10.1109/MSP.2013.2297439        Google Scholar

5. Sidiropoulos, N. D., R. Bro, and G. B. Giannakis, "Parallel factor analysis in sensor array processing," IEEE Trans. Signal Process., Vol. 48, No. 8, 2377-2388, 2000.
doi:10.1109/78.852018        Google Scholar

6. Gao, Y.-F., L. Zou, and Q. Wan, "A two-dimensional arrival angles estimation for L-shaped array based on tensor decomposition," AEU Int. J. Electron. Commun., Vol. 69, No. 4, 736-744, 2015.
doi:10.1016/j.aeue.2015.01.001        Google Scholar

7. Miron, S., X. Guo, and D. Brie, "DOA estimation for polarized sources on a vector-sensor array by parafac decomposition of the fourth-order covariance tensor," 16th European Signal Processing Conference, 1-5, Aug. 2008.        Google Scholar

8. Guo, X., S. Miron, D. Brie, S. Zhu, and X. Liao, "A candecomp/parafac perspective on uniqueness of DOA estimation using a vector sensor array," IEEE Trans. Signal Process., Vol. 59, No. 7, 3475-3481, Jul. 2011.        Google Scholar

9. Forster, P., G. Ginolhac, and M. Boizard, "Derivation of the theoretical performance of a tensor music algorithm," Signal Process., Vol. 129, 97-105, 2016.
doi:10.1016/j.sigpro.2016.05.033        Google Scholar

10. Stegeman, A., "Candecomp/Parafac: From diverging components to a decomposition in block terms," SIAM J. Matrix Anal. Appl., Vol. 33, No. 2, 209-215, 2012.
doi:10.1137/110825327        Google Scholar

11. De Lathauwer, L., "Decompositions of a higher-order tensor in block terms - Part ii: Definitions and uniqueness," SIAM J. Matrix Anal. Appl., Vol. 30, No. 3, 1033-1066, 2008.
doi:10.1137/070690729        Google Scholar

12. De Lathauwer, L. and D. Nion, "Decompositions of a higher-order tensor in block terms - Part iii: Alternating least squares algorithms," SIAM J. Matrix Anal. Appl., Vol. 30, No. 3, 1067-1083, 2008.
doi:10.1137/070690730        Google Scholar

13. De Lathauwer, L., "Blind separation of exponential polynomials and the decomposition of a tensor in rank-(l r,l r,1) terms," SIAM J. Matrix Anal. Appl., Vol. 32, No. 4, 1451-1474, 2011.
doi:10.1137/100805510        Google Scholar

14. Zhao, Q., C. F. Caiafa, D. P. Mandic, Z. C. Chao, Y. Nagasaka, N. Fujii, L. Zhang, and A. Cichocki, "Higher order partial least squares (hopls): A generalized multilinear regression method," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 35, No. 7, 1660-1673, 2013.
doi:10.1109/TPAMI.2012.254        Google Scholar

15. Nie, X. and P. Wei, "Array aperture extension algorithm for 2-d DOA estimation with L-shaped array," Progress In Electromagnetics Research Letters, Vol. 52, 63-69, 2015.
doi:10.2528/PIERL15011502        Google Scholar

16. Comon, P., X. Luciani, and A. L. De Almeida, "Tensor decompositions, alternating least squares and other tales," J. Chemom., Vol. 23, No. 7-8, 393-405, 2009.
doi:10.1002/cem.1236        Google Scholar

17. Sorber, L., M. Van Barel, and L. De Lathauwer, "Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-(l r,l r,1) terms, and a new generalization," SIAM J. Optim., Vol. 23, No. 2, 695-720, 2013.
doi:10.1137/120868323        Google Scholar

18. Miron, S., N. Le Bihan, and J. I. Mars, "Vector-sensor music for polarized seismic sources localization," EURASIP J. Adv. Signal Process., Vol. 2005, No. 1, 1-11, 2005.
doi:10.1155/ASP.2005.74        Google Scholar

19. Zhang, X. and D. Xu, "Deterministic blind beamforming for electromagnetic vector sensor array," Progress In Electromagnetics Research, Vol. 84, 363-377, 2008.
doi:10.2528/PIER08080402        Google Scholar