Vol. 61
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-09
Generalized Exponential Matrix Technique Application for the Evaluation of the Dispersion Characteristics of a Chiro-Ferriteshielded Multilayered Microstrip Line
By
Progress In Electromagnetics Research M, Vol. 61, 1-14, 2017
Abstract
In this work, a new analytical matrix formulation approach for the characterization of a microwave planar structure printed on a complex medium is detailed. The approach is based on the Generalized Exponential Matrix Technique (GEMT) combined with the Method of Moments (MoM)and Galerkin's procedure. The mathematical calculation development is a robust approach that exclusively uses matrix formulations starting from Maxwell's equations until the derivation of a compact form of the Green's tensor of the studied structure. Reduced complexity and calculation simplicity foundation of the applied approach have actually incited the authors to consider the case study of a complex bianisotropic lossy chiral substrate medium. The complexity of the medium is expressed by full tensors form of all four constitutive parameters: permittivity, permeability and magnetoelectric parameters, each is represented by a nine-element tensor. To investigate the electromagnetic behavior of complex media, results of particular bianisotropy cases are presented and discussed. Original results of the biaxial chiral anisotropy case are carried out, discussed and compared with data available in literature.
Citation
Samiha Daoudi Fatiha Benabdelaziz Chemseddine Zebiri Djamel Sayad , "Generalized Exponential Matrix Technique Application for the Evaluation of the Dispersion Characteristics of a Chiro-Ferriteshielded Multilayered Microstrip Line," Progress In Electromagnetics Research M, Vol. 61, 1-14, 2017.
doi:10.2528/PIERM17082107
http://www.jpier.org/PIERM/pier.php?paper=17082107
References

1. Perić, M., S. Ilić, S. Aleksić, N. Raičević, M. Bichurin, A. Tatarenko, and R. Petrov, "Covered microstrip line with ground planes of finite width," Facta Universitatis Series: Electronics and Energetics, Vol. 27, No. 4, 589-600, Dec. 2014.
doi:10.2298/FUEE1404589P

2. Tae, H. S., K. S. Oh, H. L. Lee, W. I. Son, and J. W. Yu, "Reconfigurable 1 : 4 power divider with switched impedance matching circuits," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 2, 64-66, Feb. 2012.
doi:10.1109/LMWC.2011.2181830

3. Koul, S. K. and B. Bhat, "Inverted microstrip and suspended microstrip with anisotropic substrates," Proceedings of the IEEE, Vol. 70, No. 10, 1230-1231, Oct. 1982.
doi:10.1109/PROC.1982.12450

4. Tsalamengas, J. L., "Interaction of electromagnetic waves with general bianisotropic slabs," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 10, 1870-1878, Oct. 1992.
doi:10.1109/22.159623

5. Umashankar, K., A. Taflove, and S. Rao, "Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 6, 758-766, 1986.
doi:10.1109/TAP.1986.1143894

6. Yin, W.-Y., L.-W. Li, and I. Wollf, "The compatible effects of gyrotropy and chirality in biaxially bianisotropic chiral-and chiroferrite-ferrite microstrip line structure," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 12, 209-227, 1999.
doi:10.1002/(SICI)1099-1204(199905/06)12:3<209::AID-JNM337>3.0.CO;2-#

7. Weiglhofer, W. S., "A perspective on bianisotropy and Bianisotropics' 97," International Journal of Applied Electromagnetics and Mechanics, Vol. 9, No. 2, 93-101, 1998.

8. Zebiri, C., D. Sayad, S. Daoudi, and F. Benabdelaziz, "Microstrip line printed on a bianisotropic medium," International Conference on Advanced Communication Systems and Signal Processing, ICOSIP-2015, 111-120, 2015.

9. Heindl, R., H. Srikanth, S. Witanachchi, P. Mukherjee, T. Weller, A. S. Tatarenko, and G. Srinivasan, "Structure, magnetism, and tunable microwave properties of pulsed laser deposition grown barium ferrite/barium strontium titanate bilayer films," J. Appl. Phys., Vol. 101, No. 9, 09M503, 2007.
doi:10.1063/1.2710467

10. Tatarenko, A. S., D. V. Snisarenko, and M. Bichurin, "Modeling of magnetoelectric microwave devices," Facta Universitatis, Series: Electronics and Energetics, Vol. 30, No. 3, 285-293, 2017.
doi:10.2298/FUEE1703285T

11. Zebiri, C., F. Benabdelaziz, and M. Lashab, "Bianisotropic superstrate effect on rectangular microstrip patch antenna parameters," META'12, 2012.

12. Herman, W.-N., "Polarization eccentricity of the transverse field for modes in chiral core planar waveguides," Journal of the Optical Society of America A: Optics, Image Science and Vision, Vol. 18, No. 11, 2806-2818, 2001.
doi:10.1364/JOSAA.18.002806

13. Engheta, N., "The theory of chirostrip antennas," Proceedings of the 1988 URSI International Radio Science Symposium, 213, Syracuse, New York, 1988.

14. Zebiri, C., M. Lashab, and F. Benabdelaziz, "Effect of anisotropic magneto-chirality on the characteristics of a microstrip resonator," IET Microwaves, Antennas Propagation, Vol. 4, No. 4, 446-452, 2010.
doi:10.1049/iet-map.2008.0439

15. Hillion, P., "Harmonic plane wave propagation in anisotropic chiral media," International Journal of Applied Electromagnetics and Mechanics, Vol. 28, No. 3, 337-350, 2008.

16. Khodja, A., M. L. Tounsi, M. C. E. Yagoub, and S. Gaoua, "Full-wave analysis of the anisotropy effect in unilateral planar transmission lines by integral method," SETIT 2005, 3rd International Conference: Sciences of Electronic Technologies of Information and Telecommunications, Mar. 27-31, 2005.

17. Daoudi, S., F. Benabdelaziz, and C. Zebiri, "Spectral-domain analysis of finline printed on chiral and ferrite substrates using the generalized exponential technique combined with Galerkin's method," European Journal of Science and Technology, No. 8, 53-56, Sep. 2016. (Special Issue of the 2nd International Conference on Computational and Experimental Science and Engineering (ICCESEN-2015), Antalya, Turkey, Oct. 14-19, 2015.).

18. Aib, S., F. Benabdelaziz, C. Zebiri, and D. Sayad, "Propagation in diagonal anisotropic chirowaveguides," Advances in OptoElectronics, Vol. 2017, 2017.

19. Lindell, V., A. H. Sihvola, S. A. Tretyskov, and A. J. Vitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Altech House, Norwood, MA, 1994.

20. Wang, S. Y., W. Y. Yin, L. Zhou, J. Chen, X. Q. Gu, and L. F. Qiu, "THz wave interaction with planar structures consisting of multilayer graphene sheets and bianisotropic slabs," IEEE International Wireless Symposium (IWS), 1-4, 2014.

21. Zebiri, C., F. Benabdelaziz, and M. Lashab, "Complex media parameter effect: On the input impedance of rectangular microstrip antenna," IEEE International Conference Complex Systems (ICCS), 1-4, 2012.

22. Zebiri, C., M. Lashab, and F. Benabdelaziz, "Asymmetrical effects of bi-anisotropic substrate-superstrate sandwich structure on patch resonator," Progress In Electromagnetics Research B, Vol. 49, 319-337, 2013.
doi:10.2528/PIERB13012115

23. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radoms," Electron. Lett., Vol. 29, No. 12, 1048-1049, 1993.
doi:10.1049/el:19930699

24. Dmitriev, V., "Table of the second rank constitutive tensors for linear homogeneous media described by the point magnetic groups of symmetry," Progress In Electromagnetic Research, Vol. 28, 43-95, 2000.
doi:10.2528/PIER99062502

25. Yin, W.-Y., "Linear complex media," Encyclopedia of RF and Microwave Engineering, 694-717, John Wiley, New York, 2005.

26. Zebiri, C., M. Lashab, and F. Benabdelaziz, "Rectangular microstrip antenna with uniaxial bi-anisotropic chiral substrate-superstrate," IET Microwaves, Antennas Propagation, Vol. 5, No. 1, 17-29, Jan. 2011.
doi:10.1049/iet-map.2009.0446

27. Sayad, D., F. Benabdelaziz, C. Zebiri, S. Daoudi, and R. A. Abd-Alhameed, "Spectral domain analysis of gyrotropic anisotropy chiral effect on the input impedance of a printed dipole antenna," Progress In Electromagnetics Research M, Vol. 51, 1-8, 2016.
doi:10.2528/PIERM16073106

28. Zebiri, C., S. Daoudi, F. Benabdelaziz, M. Lashab, D. Sayad, N. T. Ali, and R. A. Abd-Alhameed, "Gyro-chirality effect of bianisotropic substrate on the operational of rectangular microstrip patch antenna," International Journal of Applied Electromagnetics and Mechanics, Vol. 51, No. 3, 249-260, 2016.
doi:10.3233/JAE-150141

29. Khodja, A., M. C. E. Yagoub, R. Touhami, and H. Baudrand, "Improved numerical modal technique for fast and accurate modeling of transmission planar structures: Application to microstrip line," 2015 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), 1-4, IEEE, 2015.

30. Polichronakis, I. P. and S. S. Kouris, "Computation of the dispersion characteristics of a shielded suspended substrate microstrip line," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 3, 581-584, 1992.
doi:10.1109/22.121739