1. Ausherman, D. A., A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Development in radar imaging," IEEE Trans. Aerospace and Electronic Systems, Vol. 20, 363-397, 1984.
doi:10.1109/TAES.1984.4502060 Google Scholar
2. David, S. S., "Remote sensing with imaging radar: A review," Geoforum, Vol. 1, 61-74, 1970.
doi:10.1016/0016-7185(70)90029-1 Google Scholar
3. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, 481-494, 2004.
doi:10.1163/156939304774113089 Google Scholar
4. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2012.
doi:10.2528/PIERM11040903 Google Scholar
5. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Problems, Vol. 25, 1-15, 2009. Google Scholar
6. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, 3527-3539, 2006.
doi:10.1109/TGRS.2006.881753 Google Scholar
7. Guo, Y., X. He, and D. Wang, "A novel super-resolution imaging method based on stochastic radiation radar array," Measurement Science and Technology, Vol. 24, No. 7, 31-36, 2013.
doi:10.1088/0957-0233/24/7/074013 Google Scholar
8. He, X., B. Liu, and D. Wang, "A novel approach of high spatial-resolution microwave staring correlated imaging," Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar, 75-78, Tsukuba, Japan, September 2013. Google Scholar
9. Ma, Y., X. He, and D. Wang, "Microwave staring correlated imaging and resolution analysis," Proceedings of 2013 Geo-Informatics in Resource Management and Sustainable Ecosystem International Symposium, 75-78, Wuhan, China, November 2013. Google Scholar
10. Li, D., X. Li, Y. Cheng, Y. Qin, and H. Wang, "Radar coincidence imaging: An instantaneous imaging technique with stochastic signals," IEEE Transactions on Geoscience Remote Sensing, Vol. 52, No. 4, 2261-2271, 2014.
doi:10.1109/TGRS.2013.2258929 Google Scholar
11. Zhu, S., A. Zhang, Z. Xu, and X. Dong, "Radar coincidence imaging with random microwave source," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1239-1242, 2015.
doi:10.1109/LAWP.2015.2399977 Google Scholar
12. Li, D., X. Li, and Y. Cheng, "Three dimensional radar coincidence imaging," Progress In Electromagnetics Research M, Vol. 33, 223-238, 2013. Google Scholar
13. Zhou, X., H. Wang, Y. Cheng, Y. Qin, and H. Chen, "Radar coincidence imaging for off-grid target using frequency hopping waveforms," International Journal of Antennas and Propagation, Vol. 2016, 1-16, 2016. Google Scholar
14. Zha, G., H. Wang, and Z. Yang, "Effect analysis and design on array geometry for coincidence imaging radar based on effective rank theory," Proceedings of 2015 ISPRS International Conference on Computer Vision in Remote Sensing, 1-8, Xiamen, China, April 2015. Google Scholar
15. Guo, Y., D. Wang, and C. Tian, "Research on sensing matrix characteristics in microwave staring correlated imaging based on compressed sensing," Proceedings of 2014 IEEE International Conference on Imaging Systems and Techniques, 1-6, Island of Santorini, Greece, October 2014. Google Scholar
16. Bell, M. R., "Information theory and radar waveform design," IEEE Trans. on Information Theory, Vol. 9, 1578-1597, 1993.
doi:10.1109/18.259642 Google Scholar
17. Luo, Y., Z. Zhao, and C. Luo, "MIMO-OTHR waveform optimization based on the mutual information theory," Progress In Electromagnetics Research M, Vol. 46, 69-80, 2016.
doi:10.2528/PIERM15102903 Google Scholar
18. Tang, B., J. Tang, and Y. Peng, "MIMO radar waveform design in colored noise based on information theory," IEEE Transactions on Signal Processing, Vol. 58, No. 9, 4684-4697, 2010.
doi:10.1109/TSP.2010.2050885 Google Scholar
19. Maherin, I. and Q. Liang, "Radar sensor network for target detection using Chernoff information and relative entropy," Physical Communication, Vol. 13, 244-252, 2014.
doi:10.1016/j.phycom.2014.01.003 Google Scholar
20. Liu, W., Y. Lu, and M. Lesturgie, "Evolutionary algorithms based sparse spectrum waveform optimization," Principles of Waveform Diversity and Design, Vol. 2011, 152-162, 2011. Google Scholar
21. Mishra, A. and A. Shukla, "Mathematical analysis of schema survival for genetic algorithms having dual mutation," Soft Computing, Vol. 1, 1-9, 2011. Google Scholar
22. Boudamouz, B., P. Millot, and C. Pichot, "MIMO antenna design with genetic algorithm for TTW radar imaging," Proceedings of 2012 EuRAD 9th European Radar Conference, 150-153, Amsterdam, the Netherlands, October 2012. Google Scholar
23. Lellouch, G. and A. Mishra, "Multi-carrier based radar signal optimization using genetic algorithm," Advances in Intelligent Systems and Computing, Vol. 258, 525-534, 2014.
doi:10.1007/978-81-322-1771-8_46 Google Scholar
24. Liu, B. and D. Wang, "Orthogonal radiation field construction for microwave staring correlated imaging," Progress In Electromagnetics Research M, Vol. 57, 139-149, 2017.
doi:10.2528/PIERM17042003 Google Scholar
25. Cerf, R., "The quasispecies regime for the simple genetic algorithm with roulette wheel selection," Advances in Applied Probability, Vol. 49, No. 3, 903-926, 2017.
doi:10.1017/apr.2017.26 Google Scholar
26. Rubae, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton’s method and the CGLS inversion algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, 2320-2331, 2007. Google Scholar