1. Cheng, Y. Z., Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, "Asymmetric chiral metamaterial circular polarizer based on twisted split-ring resonator," Appl. Phys. B, Vol. 116, No. 1, 129-134, 2014.
doi:10.1007/s00340-013-5659-z Google Scholar
2. Zebiri, C. and F. Benabdelaziz, "Asymptotic approach for rectangular microstrip patch antenna with magnetic anisotropy and chiral substrate," World Academy of Science, Engineering and Technology, Vol. 2, 316-322, 2008. Google Scholar
3. Guven, K., E. Saenz, R. Gonzalo, et al. "Electromagnetic cloaking with canonical spiral inclusions," New J. Phys., Vol. 10, No. 11, 2008.
doi:10.1088/1367-2630/10/11/115037 Google Scholar
4. Li, M., L. Guo, J. Dong, and H. Yang, "An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves," Journal of Physics D: Applied Physics, Vol. 47, 2014. Google Scholar
5. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radomes," Electronics Letters, Vol. 29, No. 12, 1048-1049, 1993.
doi:10.1049/el:19930699 Google Scholar
6. Prosvirnin, S. L. and N. I. Zheludev, "Analysis of polarization transformations by a planar chiral array of complex-shaped particles," Journal of Optics A: Pure and Applied Optics, Vol. 11, 2009. Google Scholar
7. Varadan, V. K., A. Lkhtakia, and V. V. Varadan, "Propagation in a parallel-plate waveguide wholly filled with a chiral medium," Journal of Wave-material Interaction, Vol. 3, No. 3, 267-272, 1988. Google Scholar
8. Grande, A., I. Barba, A. C. L. Cabeceira, J. Represa, P. P. M. So, and W. J. R. Hoefer, "FDTD modeling of transient microwave signals in dispersive and lossy bi-isotropic media," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 773-783, 2004.
doi:10.1109/TMTT.2004.823537 Google Scholar
9. Akyurtlu, A., D. H. Werner, and K. Aydin, "Bi-FDTD: A new technique for modeling electromagnetic wave interaction with Bi-isotropic media," Microwave and Optical Technology Letters, Vol. 26, No. 4, 239-242, 2000.
doi:10.1002/1098-2760(20000820)26:4<239::AID-MOP11>3.0.CO;2-D Google Scholar
10. Akyurtlu, A., D. H. Werner, and K. Aydin, "A novel FDTD technique for modeling chiral media," IEEE Antennas Propagation Society Int. Symp., Vol. 3, 1332-1335, Salt Lake City, UT, 2000. Google Scholar
11. Akyurtlu, A. and D. H. Werner, "Modeling chiral media using a new dispersive FDTD technique," IEEE Antennas Propagation Society Int. Symp., Vol. 1, 44-47, Boston, MA, 2001. Google Scholar
12. Akyurtlu, A. and D. H. Werner, "Analysis of double negative media with magneto-electric coupling using a novel dispersive FDTD formulation," IEEE Int. Symp. Antennas Propagation USNC/URSI Nat. Radio Science Meeting, Vol. 3, 371-374, Columbus, 2003. Google Scholar
13. Akyurtlu, A. and D. H. Werner, "BI-FDTD: A novel finite-difference time-domain formulation for modeling wave propagation in bi-isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 416-425, 2004.
doi:10.1109/TAP.2004.823956 Google Scholar
14. Akyurtlu, A. and D. H. Werner, "A Novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2267-2276, 2004.
doi:10.1109/TAP.2004.834153 Google Scholar
15. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the z transform method," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3374-3384, 2005.
doi:10.1109/TAP.2005.856328 Google Scholar
16. Attiya, A. M., "Shift-operator finite difference time domain analysis of chiral medium," Progress In Electromagnetics Research M, Vol. 13, 29-40, 2010.
doi:10.2528/PIERM10052403 Google Scholar
17. Grande, A., I. Barba, A. C. L. Cabeceira, J. Represa, K. Karkkainen, and A. H. Sihvola, "Two-Dimensional Extension of a Novel FDTD technique for modeling dispersive lossy bi-isotropic media using the auxiliary differential equation method," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 5, 375-377, 2005.
doi:10.1109/LMWC.2005.847732 Google Scholar
18. Wang, M. Y., H. F. Mu, W. Chen, L. Zhao, and J. Xu, "FDTD analysis of chiral metamaterials slab by using the auxiliary differential equation algorithm," Frequenz, Vol. 67, No. 5-6, 155-161, DE Gruyter, 2013. Google Scholar
19. Pereda, J. A., A. Grande, O. Gonzalez, and A. Vegas, "FDTD modeling of chiral media by using the mobius transformation technique," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 327-330, 2006.
doi:10.1109/LAWP.2006.878902 Google Scholar
20. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Time-domain modeling of electromagnetic wave propagation in complex materials," Electromagnetics, Vol. 19, No. 6, 527-546, 1999.
doi:10.1080/02726349908908672 Google Scholar
21. Yaich, M. I., M. Khalladi, and M. Essaaidi, "Efficient modeling of chiral media using SCN-TLM method," Serbian Journal of Electrical Engineering, 249-254, 2004.
doi:10.2298/SJEE0402249Y Google Scholar
22. Cabeceira, C. L., A. Grande, I. Barba, and J. Represa, "A 2D-TLM model for electromagnetic wave propagation in chiral media," Antennas & Propagation Society International Symposium, Vol. 2, No. 5, 1487-1490, 2004. Google Scholar
23. Sihvola, A. H., "Electromagnetic modeling of bi-isotropic media," Progress In Electromagnetic Research, Vol. 9, 45-86, 1994. Google Scholar
24. Solymar, L., Electrical Properties of Materials, Oxford University Press Inc., 2010.
25. Christopoulos, C., "The Transmission-Line Modeling (TLM) method in electromagnetics," Synthesis Lectures on Computational Electromagnetics, Morgan & Claypool, 2006. Google Scholar
26. Jin, H. and R. Vahldieck, "Direct derivation of the TLM symmetrical condensed node and hybrid symmetrical condensed node from Maxwell’s equations using centered differencing and averaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 2554-2561, Dec. 1994. Google Scholar
27. Zhao, R., T. Koschny, and C. M. Soukoulis, "Chiral metamaterials: Retrieval of the effective parameters with and without substrate," Optics Express, Vol. 18, No. 14, 14553-14567, Jul. 2010.
doi:10.1364/OE.18.014553 Google Scholar