1. Gusynin, V., S. Sharapov, and J. Carbotte, "Anomalous absorption line in the magneto-optical response of graphene," Physical Review Letters, Vol. 98, 157402, 2007.
doi:10.1103/PhysRevLett.98.157402 Google Scholar
2. Koppens, F. H., D. E. Chang, and F. J. Garcia de Abajo, "Graphene plasmonics: A platform for strong light–matter interactions," Nano Letters, Vol. 11, 3370-3377, 2011.
doi:10.1021/nl201771h Google Scholar
3. Nair, R., P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, and A. Geim, "Fine structure constant defines visual transparency of graphene," Science, Vol. 320, 1308-1308, 2008.
doi:10.1126/science.1156965 Google Scholar
4. Li, Y., F. Kong, and K. Li, "Graphene-based infrared lens with tunable focal length," Progress In Electromagnetics Research, Vol. 155, 19-26, 2016.
doi:10.2528/PIER15120201 Google Scholar
5. Mikhailov, S. and K. Ziegler, "New electromagnetic mode in graphene," Physical Review Letters, Vol. 99, 016803, 2007.
doi:10.1103/PhysRevLett.99.016803 Google Scholar
6. Ziegler, K., "Robust transport properties in graphene," Physical Review Letters, Vol. 97, 266802, 2006.
doi:10.1103/PhysRevLett.97.266802 Google Scholar
7. Correas-Serrano, D., J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, "Graphenebased plasmonic tunable low-pass filters in the terahertz band," IEEE Transactions on Nanotechnology, Vol. 13, 1145-1153, 2014.
doi:10.1109/TNANO.2014.2344973 Google Scholar
8. Abbas, F., A. Lakhtakia, Q. A. Naqvi, and M. Faryad, "An optical-sensing modality that exploits Dyakonov-Tamm waves," Photonics Research, Vol. 3, 5-8, 2015.
doi:10.1364/PRJ.3.000005 Google Scholar
9. Wu, Y., M. Qu, Y. Liu, and Z. Ghassemlooy, "A broadband graphene-based THz coupler with wide-range tunable power-dividing ratios," Plasmonics, Vol. 12, 1487-1492, 2017.
doi:10.1007/s11468-016-0409-9 Google Scholar
10. Kong, M., Y. Wu, Z. Zhuang, W. Wang, and Y. Liu, "Graphene-based THz tunable bandstop filter with constant absolute bandwidth," Progress In Electromagnetics Research Letters, Vol. 71, 141-147, 2017.
doi:10.2528/PIERC16122201 Google Scholar
11. Wu, H.-Q., C.-Y. Linghu, H.-M. Lu, and H. Qian, "Graphene applications in electronic and optoelectronic devices and circuits," Chinese Physics B, Vol. 22, 098106, 2013.
doi:10.1088/1674-1056/22/9/098106 Google Scholar
12. Dash, G., S. R. Pattanaik, and S. Behera, "Graphene for electron devices: The panorama of a decade," IEEE Journal of the Electron Devices Society, Vol. 2, No. 5, 77-104, 2014.
doi:10.1109/JEDS.2014.2328032 Google Scholar
13. Kusmartsev, F., W.Wu, M. Pierpoint, and K. Yung, "Application of graphene within optoelectronic devices and transistors," Applied Spectroscopy and the Science of Nanomaterials, 191-221, Springer, 2015. Google Scholar
14. Kuila, T., S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, "Recent advances in graphene-based biosensors," Biosensors and Bioelectronics, Vol. 26, 4637-4648, 2011.
doi:10.1016/j.bios.2011.05.039 Google Scholar
15. Madani, A., S. Zhong, H. Tajalli, S. Roshan Entezar, A. Namdar, and Y. Ma, "Tunable metamaterials made of graphene-liquid crystal multilayers," Progress In Electromagnetics Research, Vol. 143, 545-558, 2013.
doi:10.2528/PIER13080302 Google Scholar
16. Peres, N. and E. V. Castro, "Algebraic solution of a graphene layer in transverse electric and perpendicular magnetic fields," Journal of Physics: Condensed Matter, Vol. 19, 406231, 2007.
doi:10.1088/0953-8984/19/40/406231 Google Scholar
17. Kuzmin, D. A., I. V. Bychkov, and V. G. Shavrov, "Influence of graphene coating on speckle-pattern rotation of light in gyrotropic optical fiber," Optics Letters, Vol. 40, 890-893, 2015.
doi:10.1364/OL.40.000890 Google Scholar
18. Stauber, T., N. Peres, and A. Geim, "Optical conductivity of graphene in the visible region of the spectrum," Physical Review B, Vol. 78, 085432, 2008.
doi:10.1103/PhysRevB.78.085432 Google Scholar
19. Wang, G., Z. Gao, G. Wan, S. Lin, P. Yang, and Y. Qin, "Supported high-density magnetic nanoparticles on graphene by atomic layer deposition used as efficient synergistic microwave absorbers,", 2014, DOI: 10.1007/s12274-014-0432-0. Google Scholar
20. Bao, Q., H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, "Broadband graphene polarizer," Nature Photonics, Vol. 5, 411-415, 2011.
doi:10.1038/nphoton.2011.102 Google Scholar
21. Nilsson, J., A. C. Neto, F. Guinea, and N. Peres, "Transmission through a biased graphene bilayer barrier," Physical Review B, Vol. 76, 165416, 2007.
doi:10.1103/PhysRevB.76.165416 Google Scholar
22. Jiang, L., Y. Xiang, X. Dai, and S. Wen, "Superluminal pulse reflection from graphene covered lossless dielectric slab," IEEE Journal of Quantum Electronics, Vol. 51, No. 3, 7000106, 2015.
doi:10.1109/JQE.2015.2396301 Google Scholar
23. Othman, M. A., C. Guclu, and F. Capolino, "Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption," Optics Express, Vol. 21, 7614-7632, 2013.
doi:10.1364/OE.21.007614 Google Scholar
24. Arrazola, I., R. Hillenbrand, and A. Y. Nikitin, "Plasmons in graphene on uniaxial substrates," Applied Physics Letters, Vol. 104, 011111, 2014.
doi:10.1063/1.4860576 Google Scholar
25. Nikolaenko, A. E., N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, "Nonlinear graphene metamaterial," Applied Physics Letters, Vol. 100, 181109, 2012.
doi:10.1063/1.4711044 Google Scholar
26. Lekner, J., "Normal-incidence reflection and transmission by uniaxial crystals and crystal plates," Journal of Physics: Condensed Matter, Vol. 4, 1387, 1992.
doi:10.1088/0953-8984/4/5/019 Google Scholar