Vol. 73
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-09-07
Electromagnetic Wave Reflectance, Transmittance, and Absorption in a Graphene-Covered Uniaxial Crystal Slab
By
Progress In Electromagnetics Research M, Vol. 73, 71-79, 2018
Abstract
A theoretical investigation of the interaction of electromagnetic plane waves with a uniaxial crystal slab, bounded by two graphene layers from both sides, placed in free space is presented in this paper. An 8×8 matrix method is developed using boundary conditions at a graphene-uniaxial anisotropic crystal interface and a uniaxial anisotropic crystal-graphene interface. The developed matrix is used to find reflection and transmission coefficients by Crammer's rule. Numerical results are presented to demonstrate the effect of frequency of the incident wave, thickness of the uniaxial crystal slab, and Fermi energy of the graphene on the reflected and transmitted energies. The presented formulations and results are confirmed by published results of some limited cases.
Citation
Muhammad Azam, Irfan Toqeer, Abdul Ghaffar, Muhammad Yasin Naz, Majeed Alkanhal, and Yasin Khan, "Electromagnetic Wave Reflectance, Transmittance, and Absorption in a Graphene-Covered Uniaxial Crystal Slab," Progress In Electromagnetics Research M, Vol. 73, 71-79, 2018.
doi:10.2528/PIERM18060405
References

1. Gusynin, V., S. Sharapov, and J. Carbotte, "Anomalous absorption line in the magneto-optical response of graphene," Physical Review Letters, Vol. 98, 157402, 2007.
doi:10.1103/PhysRevLett.98.157402        Google Scholar

2. Koppens, F. H., D. E. Chang, and F. J. Garcia de Abajo, "Graphene plasmonics: A platform for strong light–matter interactions," Nano Letters, Vol. 11, 3370-3377, 2011.
doi:10.1021/nl201771h        Google Scholar

3. Nair, R., P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, and A. Geim, "Fine structure constant defines visual transparency of graphene," Science, Vol. 320, 1308-1308, 2008.
doi:10.1126/science.1156965        Google Scholar

4. Li, Y., F. Kong, and K. Li, "Graphene-based infrared lens with tunable focal length," Progress In Electromagnetics Research, Vol. 155, 19-26, 2016.
doi:10.2528/PIER15120201        Google Scholar

5. Mikhailov, S. and K. Ziegler, "New electromagnetic mode in graphene," Physical Review Letters, Vol. 99, 016803, 2007.
doi:10.1103/PhysRevLett.99.016803        Google Scholar

6. Ziegler, K., "Robust transport properties in graphene," Physical Review Letters, Vol. 97, 266802, 2006.
doi:10.1103/PhysRevLett.97.266802        Google Scholar

7. Correas-Serrano, D., J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, "Graphenebased plasmonic tunable low-pass filters in the terahertz band," IEEE Transactions on Nanotechnology, Vol. 13, 1145-1153, 2014.
doi:10.1109/TNANO.2014.2344973        Google Scholar

8. Abbas, F., A. Lakhtakia, Q. A. Naqvi, and M. Faryad, "An optical-sensing modality that exploits Dyakonov-Tamm waves," Photonics Research, Vol. 3, 5-8, 2015.
doi:10.1364/PRJ.3.000005        Google Scholar

9. Wu, Y., M. Qu, Y. Liu, and Z. Ghassemlooy, "A broadband graphene-based THz coupler with wide-range tunable power-dividing ratios," Plasmonics, Vol. 12, 1487-1492, 2017.
doi:10.1007/s11468-016-0409-9        Google Scholar

10. Kong, M., Y. Wu, Z. Zhuang, W. Wang, and Y. Liu, "Graphene-based THz tunable bandstop filter with constant absolute bandwidth," Progress In Electromagnetics Research Letters, Vol. 71, 141-147, 2017.
doi:10.2528/PIERC16122201        Google Scholar

11. Wu, H.-Q., C.-Y. Linghu, H.-M. Lu, and H. Qian, "Graphene applications in electronic and optoelectronic devices and circuits," Chinese Physics B, Vol. 22, 098106, 2013.
doi:10.1088/1674-1056/22/9/098106        Google Scholar

12. Dash, G., S. R. Pattanaik, and S. Behera, "Graphene for electron devices: The panorama of a decade," IEEE Journal of the Electron Devices Society, Vol. 2, No. 5, 77-104, 2014.
doi:10.1109/JEDS.2014.2328032        Google Scholar

13. Kusmartsev, F., W.Wu, M. Pierpoint, and K. Yung, "Application of graphene within optoelectronic devices and transistors," Applied Spectroscopy and the Science of Nanomaterials, 191-221, Springer, 2015.        Google Scholar

14. Kuila, T., S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, "Recent advances in graphene-based biosensors," Biosensors and Bioelectronics, Vol. 26, 4637-4648, 2011.
doi:10.1016/j.bios.2011.05.039        Google Scholar

15. Madani, A., S. Zhong, H. Tajalli, S. Roshan Entezar, A. Namdar, and Y. Ma, "Tunable metamaterials made of graphene-liquid crystal multilayers," Progress In Electromagnetics Research, Vol. 143, 545-558, 2013.
doi:10.2528/PIER13080302        Google Scholar

16. Peres, N. and E. V. Castro, "Algebraic solution of a graphene layer in transverse electric and perpendicular magnetic fields," Journal of Physics: Condensed Matter, Vol. 19, 406231, 2007.
doi:10.1088/0953-8984/19/40/406231        Google Scholar

17. Kuzmin, D. A., I. V. Bychkov, and V. G. Shavrov, "Influence of graphene coating on speckle-pattern rotation of light in gyrotropic optical fiber," Optics Letters, Vol. 40, 890-893, 2015.
doi:10.1364/OL.40.000890        Google Scholar

18. Stauber, T., N. Peres, and A. Geim, "Optical conductivity of graphene in the visible region of the spectrum," Physical Review B, Vol. 78, 085432, 2008.
doi:10.1103/PhysRevB.78.085432        Google Scholar

19. Wang, G., Z. Gao, G. Wan, S. Lin, P. Yang, and Y. Qin, "Supported high-density magnetic nanoparticles on graphene by atomic layer deposition used as efficient synergistic microwave absorbers,", 2014, DOI: 10.1007/s12274-014-0432-0.        Google Scholar

20. Bao, Q., H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, "Broadband graphene polarizer," Nature Photonics, Vol. 5, 411-415, 2011.
doi:10.1038/nphoton.2011.102        Google Scholar

21. Nilsson, J., A. C. Neto, F. Guinea, and N. Peres, "Transmission through a biased graphene bilayer barrier," Physical Review B, Vol. 76, 165416, 2007.
doi:10.1103/PhysRevB.76.165416        Google Scholar

22. Jiang, L., Y. Xiang, X. Dai, and S. Wen, "Superluminal pulse reflection from graphene covered lossless dielectric slab," IEEE Journal of Quantum Electronics, Vol. 51, No. 3, 7000106, 2015.
doi:10.1109/JQE.2015.2396301        Google Scholar

23. Othman, M. A., C. Guclu, and F. Capolino, "Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption," Optics Express, Vol. 21, 7614-7632, 2013.
doi:10.1364/OE.21.007614        Google Scholar

24. Arrazola, I., R. Hillenbrand, and A. Y. Nikitin, "Plasmons in graphene on uniaxial substrates," Applied Physics Letters, Vol. 104, 011111, 2014.
doi:10.1063/1.4860576        Google Scholar

25. Nikolaenko, A. E., N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, "Nonlinear graphene metamaterial," Applied Physics Letters, Vol. 100, 181109, 2012.
doi:10.1063/1.4711044        Google Scholar

26. Lekner, J., "Normal-incidence reflection and transmission by uniaxial crystals and crystal plates," Journal of Physics: Condensed Matter, Vol. 4, 1387, 1992.
doi:10.1088/0953-8984/4/5/019        Google Scholar