Vol. 79
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-03-14
A Compact Endfire Radiation Antenna Based on Spoof Surface Plasmon Polaritons in Wide Bandwidth
By
Progress In Electromagnetics Research M, Vol. 79, 147-157, 2019
Abstract
A compact slot-coupled endfire radiation antenna based on a tapering spoof surface plasmon polaritons (SSPPs) structure with high efficiency is proposed in this paper. A narrow slot balun is designed to feed the SSPPs structure rather than to work as the primary radiator. Simulated results show that the odd SPP mode is successfully excited on the tapering SSPPs structure, which contributes to the endfire radiation. Due to the high confinement of SSPPs, the proposed antenna shows low RCS within the frequency band of 1.5 GHz-4 GHz and 5.6 GHz-8 GHz. A prototype is fabricated and tested. Simulated and measured results show good agreement that the proposed antenna can provide stable endfire radiation patterns within the frequency band of 2 GHz-3.4 GHz. The maximum gain reaches 8 dBi, and the average efficiency over this bandwidth is 80%. The high-efficiency endfire SSPPs antenna with balanced broad band and high gain has a promising application in communication systems and integrated circuits.
Citation
Kaijie Zhuang, Jun-Ping Geng, Ziheng Ding, Xiaonan Zhao, Wenfeng Ma, Han Zhou, Chao Xie, Xianling Liang, and Rong-Hong Jin, "A Compact Endfire Radiation Antenna Based on Spoof Surface Plasmon Polaritons in Wide Bandwidth," Progress In Electromagnetics Research M, Vol. 79, 147-157, 2019.
doi:10.2528/PIERM18121408
References

1. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature, Vol. 424, 824-830, Aug. 2003.        Google Scholar

2. Sarkar, T. K., et al. "Surface plasmons/polaritons, surface waves, and zenneck waves: Clarification of the terms and a description of the concepts and their evolution," IEEE Antennas & Propagation Magazine, Vol. 59, 77-93, Jun. 2017.        Google Scholar

3. Grigorenko, A. N., M. Polini, and K. S. Novoselov, "Graphene plasmonics," Nat. Photonics, Vol. 6, 749-758, Nov. 2012.        Google Scholar

4. Politano, A., G. Chiarello, and C. Spinella, "Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy," Mater. Sci. Semicond. Process., Vol. 65, 88-99, Jul. 2017.        Google Scholar

5. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, Jul. 2014.        Google Scholar

6. Tassin, P., T. Koschny, M. Kafesaki, and G. M. Soukoulis, "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics," Nat. Photonics, Vol. 6, 259-264, Mar. 2012.        Google Scholar

7. Bao, Q. and K. P. Loh, "Graphene photonics, plasmonics, and broadband optoelectronic devices," ACS Nano, Vol. 6, No. 5, 3677-3694, Apr. 2012.        Google Scholar

8. Koppens, F. H. L., D. E. Chang, and F. J. G. D. Abajo, "Graphene plasmonics: A platform for strong light-matter interactions," Nano Lett., Vol. 11, No. 8, 3370-3377, Jul. 2011.        Google Scholar

9. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," APL Materials, Vol. 5, Feb. 2017.        Google Scholar

10. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Sci. Rep., Vol. 6, Feb. 2016.        Google Scholar

11. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Lett., Vol. 16, No. 1, 80-87, Dec. 2015.        Google Scholar

12. Berry, C. W., N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, "Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes," Nat. Commun., Vol. 4, Mar. 2013.        Google Scholar

13. Tang, W., A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, "Ultrasensitive room temperature terahertz direct detection based on a bismuth selenide topological insulator," Adv. Funct., Vol. 28, No. 31, Aug. 2018.        Google Scholar

14. Agarwal, A., M. S. Vitiello, L. Viti, A. Cupolilloc, and A. Politano, "Plasmonics with two-dimensional semiconductors: from basic research to technological applications," Nanoscale, Vol. 10, 8938-8946, May 2018.        Google Scholar

15. Ali, M. R. K., H. R. Ali, C. R. Rankin, and M. A. El-Sayed, "Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy," Biomaterials, Vol. 102, 1-8, Sep. 2016.        Google Scholar

16. Law, W. C., K. T. Yong, A. Bae, and P. N. Prasad, "Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement," ACS Nano, Vol. 5, No. 6, 4858-4864, Apr. 2011.        Google Scholar

17. Zhang, J. Z., "Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer," J. Phys. Chem. Lett., Vol. 1, No. 4, 686-695, Jan. 2010.        Google Scholar

18. Wang, H. N. and T. Vo-Dinh, "Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes," Nanotechnology, Vol. 20, No. 6, Jan. 2009.        Google Scholar

19. Politano, A., G. D. Profio, E. Fontananova, V. Sanna, A. Cupolillo, and E. Curcio, "Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes," Desalination, Vol. 451, 192-199, Feb. 2019.        Google Scholar

20. Politano, A., P. Argurio, G. D. Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H. A. Arafat, and E. Curcio, "Photothermal membrane distillation for seawater desalination," Adv. Mater., Vol. 29, No. 2, Jan. 2017.        Google Scholar

21. Politano, A., A. Cupolillo, G. Di Profio, H. A. Arafat, G. Chiarello, and E. Curcio, "When plasmonics meets membrane technology," J. Phys.: Condens. Matter, Vol. 28, No. 36, Jul. 2016.        Google Scholar

22. Park, K. D. and M. B. Raschke, "Polarization control with plasmonic antenna tips: A universal approach to optical nano-crystallography and vector-field imaging," Nano Lett., Vol. 18, No. 5, 2912-2917, Mar. 2018.        Google Scholar

23. Xu, W., T. K. Lee, B. S. Moon, H. Song, X. Chen, B. Chun, Y. J. Kim, S. K. Kwak, P. Chen, and D. H. Kim, "Broadband plasmonic antenna enhanced upconversion and its application in flexible fingerprint identification," Adv. Opt. Mater., Vol. 6, No. 6, Mar. 2018.        Google Scholar

24. Vercruysse, D., P. Neutens, L. Lagae, N. Verellen, and P. V. Dorpe, "Single asymmetric plasmonic antenna as a directional coupler to a dielectric waveguide," ACS Photonics, Vol. 4, No. 6, 1298-1402, Apr. 2017.        Google Scholar

25. Viti, L., J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Polotano, and M. S. Vitiello, "Black phosphorus terahertz photodetectors," Adv. Mater., Vol. 27, 5567-5572, May 2018.        Google Scholar

26. Pendry, J., L. Martin-Moreno, and F. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847-848, 2004.        Google Scholar

27. Maier, S. A., S. R. Andrews, L. Martin-Moreno, and F. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on peri-odically corrugated metal wires," Phys. Rev. Lett., Vol. 97, Oct. 2006.        Google Scholar

28. Kianinejad, A., Z. N. Chen, and C. W. Qiu, "Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation," IEEE Transactions on Microwave Theory Techniques, Vol. 64, No. 10, 3078-3086, 2016.        Google Scholar

29. Liu, L., et al. "Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes," Applied Physics Letters, Vol. 107, No. 20, 2015.        Google Scholar

30. Gao, X., L. Zhou, and T. J. Cui, "Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial," Scientific Reports, 2015.        Google Scholar

31. Yin, J. Y., J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, "Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure," Sci. Rep., Vol. 5, 2015.        Google Scholar

32. Pan, B. C., Z. Liao, J. Zhao, and T. J. Cui, "Controlling rejections of spoof surface plasmon polaritons using metamaterial particles," Opt. Express, Vol. 22, 13940-13950, Jun. 2014.        Google Scholar

33. Wu, J. J., D. J. Hou, T. Yang, I. Hsieh, Y. Kao, and H. Lin, "Bandpass filter based on low frequency spoof surface plasmon polaritons," Electron. Lett., Vol. 48, 269-270, Mar. 2012.        Google Scholar

34. Shibayama, J., J. Yamauchi, and H. Nakano, "Metal disc-type splitter with radially placed gratings for terahertz surface waves," Electron. Lett., Vol. 51, 352-353, Feb. 2015.        Google Scholar

35. Shen, X., G. Moreno, A. Chahadih, T. Akalin, and T. J. Cui, "Spoof surface plasmonic devices and circuits in THz frequency," IRMMW-THz, 1, 2014.        Google Scholar

36. Zhou, Y. J., X. X. Yang, and T. J. Cui, "A multidirectional frequency splitter with band-stop plasmonic filters," Journal of Applied Physics, Vol. 115, No. 12, 2014.        Google Scholar

37. Liao, D., Y. Zhang, and H. G. Wang, "Wide-angle frequency-controlled beam scanning antenna fed by standing wave based on the cut-off characteristics of spoof surface plasmon polaritons," IEEE Antennas & Wireless Propagation Letters, Vol. 17, No. 7, Jul. 2018.        Google Scholar

38. Zhang, Q., Q. Zhang, and Y. Chen, "Spoof surface plasmon polariton leaky-wave antennas using periodically loaded patches above PEC and AMC ground planes," IEEE Antennas Wireless Propag. Lett., Vol. 16, 3014-3017, 2017.        Google Scholar

39. Gu, S. K., H. F. Ma, B. G. Cai, and T. J. Cui, "Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide," Scientific Reports, Vol. 6, 29600, 2016.        Google Scholar

40. Kandwal, A., Q. Zhang, X. Tang, L. W. Liu, and G. Zhang, "Low-profile spoof surface plasmon polaritons traveling-wave antenna for endfire radiation," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 2, 184-187, 2017.        Google Scholar

41. Han, Y. J., et al. "360˚ scanning multi-beam antenna based on spoof surface plasmon polaritons," Acta Physica Sinica, Vol. 65, No. 14, 2016.        Google Scholar

42. Yin, J. Y., D. Bao, J. Ren, H. C. Zhang, B. C. Pan, Y. Fan, and T. J. Cui, "Endfire radiations of spoof surface plasmon polaritons," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 597-600, 2017.        Google Scholar

43. Yin, J. Y., et al. "Direct radiations of surface plasmon polariton waves by gradient groove depth and flaring metal structure," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 865-868, 2016.        Google Scholar

44. Dong, W., et al. "A high efficiency broadband omnidirectional UHF patch antenna applying surface plasmon polaritons for handheld terminals," IEEE Antennas & Wireless Propagation Letters, Vol. 17, 283-286, 2018.        Google Scholar

45. Dong, W., et al. "A novel patch antenna based on surface plasma polarization," The 5th International Symposium on Electromagnetic Compatibility, EMC, Beijing, Oct. 2017.        Google Scholar

46. Dong, W., et al. "A surface plasmon polariton inspired patch antenna," IEEE APS, San Diago, 2017.        Google Scholar

47. Zhuang, K., et al. "Spoof surface plasmon polaritons pattern reconfigurable antenna for wide-angle coverage," IEEE APS, 2018.        Google Scholar

48. Zhang, J., L. Cai, W. Bai, Y. Xu, and G. Song, "Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide," Journal of Applied Physics, Vol. 106, No. 10, Nov. 2009.        Google Scholar

49. Xiang, H., Y. Meng, Q. Zhang, F. F. Qin, J. J. Xiao, D. Han, and W. Wen, "Spoof surface plasmon polaritons on ultrathin metal strips with tapered grooves," Optics Communications, Vol. 356, No. 1, 59-63, Dec. 2015.        Google Scholar

50. Zhang, Y., E. Li, C. Wang, and G. Guo, "Radiation enhanced Vivaldi antenna with double-antipodal structure," IEEE Antennas & Wireless Propagation Letters, Vol. 16, No. 99, 561-564, 2017.        Google Scholar

51. Liu, Y., W. Zhou, S. Yang, W. Li, P. Li, and S. Yang, "A novel miniaturized vivaldi antenna using tapered slot edge with resonant cavity structure for ultra-wide band applications," IEEE Antennas and Wireless Propagation Letters, 2016.        Google Scholar

52. Kianinejad, A., Z. N. Chen, and C.-W. Qiu, "Design and modeling of spoof surface plasmon modes-based microwave slow-wave trans-mission line," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 6, 1817-1825, Jun. 2015.        Google Scholar