Vol. 87
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-12-16
Gain Enhancement in MIMO Antennas Using Defected Ground Structure
By
Progress In Electromagnetics Research M, Vol. 87, 127-136, 2019
Abstract
This paper investigates a low-profile Multiple Input Multiple Output (MIMO) antenna with enhanced gain based on Defected Ground Structure (DGS). The proposed antenna consists of two sets of four elements (2 x 2), and it is yielded at the central frequency of 5.5 GHz for Wireless Local Area Network (WLAN) applications. Being on RT5880 with height of 1.575 mm, the overall dimensions of MIMO antenna and single array are 145 x 88 x 1.575 mm3 and 75 x 82 x 1.575 mm3, respectively. To get high gain and low mutual coupling for antenna, a Defected Ground Structure (DGS) is proposed and integrated on ground plane. At 5.3 GHz, the gain of antenna achieves approximately 9.5 dBi while mutual coupling level is under -20 dB. Besides, the MIMO antenna witnesses a radiation efficiency of 93%. The measurement results are compared to simulation ones to verify the performance of the proposed antenna.
Citation
Ngoc Lan Nguyen , "Gain Enhancement in MIMO Antennas Using Defected Ground Structure," Progress In Electromagnetics Research M, Vol. 87, 127-136, 2019.
doi:10.2528/PIERM19091102
http://www.jpier.org/PIERM/pier.php?paper=19091102
References

1. Alam, S., M. T. Islam, and H. Arshad, "Gain enhancement of a multiband resonator using defected ground surface on epoxy woven glass material," The Scientific World Journal, 2014.

2. Rajawat, A., P. K. Singhal, S. H. Gupta, and C. Jain, "Gain enhancement of microstrip patch antenna using H-shaped defected ground structure," Progress in Intelligent Computing Techniques: Theory, Practice, and Applications, 2018.

3. Zheng, Y., et al., "Metamaterial-based patch antenna with wideband RCS reduction and gain enhancement using improved loading method," IET Microwaves, Antennas & Propagation, Vol. 11, No. 9, 1183-1189, 2017.
doi:10.1049/iet-map.2016.0746

4. Saravanan, M., V. B. Geo, and S. M. Umarani, "Gain enhancement of patch antenna integrated with metamaterial inspired superstrate," Journal of Electrical Systems and Information Technology, 2-9, 2018.

5. Kim, J. H., C. H. Ahn, and J. K. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1164-1167, 2016.
doi:10.1109/TAP.2016.2518650

6. Cao, W., B. Zhang, A. Liu, T. Yu, D. Guo, and Y. Wei, "Gain enhancement for broadband periodic endfire antenna by using split-ring resonator structures," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3513-3516, 2012.
doi:10.1109/TAP.2012.2196959

7. Liu, Z., P. Wang, and Z. Zeng, "Enhancement of the gain for microstrip antennas using negative permeability metamaterial on low temperature co-fired ceramic (LTCC) substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 429-432, 2013.
doi:10.1109/LAWP.2013.2254697

8. Roy, S. and U. Chakraborty, "Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Communications, Vol. 12, No. 12, 1448-1453, 2018.
doi:10.1049/iet-com.2018.0170

9. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, 1-22, 2017.
doi:10.1155/2017/2018527

10. Dgs, G. S., "Investigation of novel tapered hybrid defected ground structure (DGS)," International Journal RF and Microwave Computer-Aided Engineering, 544-550, 2005.

11. Paulraj, A. J., D. A. Gore, R. U. Nabar, and H. Bolcskei, "An overview of MIMO communications — A key to gigabit wireless," Proceedings of the IEEE, Vol. 92, No. 2, 198-217, 2004.
doi:10.1109/JPROC.2003.821915

12. Pandit, S., A. Mohan, and P. Ray, "A compact four-element MIMO antenna for WLAN applications," Microwave and Optical Technology Letters, Vol. 60, No. 2, 289-295, 2018.
doi:10.1002/mop.30961

13. Sharawi, M. S., et al., "A CSRR loaded MIMO antenna system for ISM band operation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4265-4274, 2013.
doi:10.1109/TAP.2013.2263214

14. Yang, L., S. Yan, and T. Li, "Compact printed four-element MIMO antenna system for LTE/ISM operations," Progress In Electromagnetics Research Letters, Vol. 54, 47-53, 2015.

15. Anitha, R., P. V. Vinesh, K. C. Prakash, P. Mohanan, K. Vasudevan, and S. Member, "A compact quad element slotted ground wideband antenna for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4550-4553, 2016.
doi:10.1109/TAP.2016.2593932

16., "Gaussian beam,", Online Available: https://en.wikipedia.org/wiki/Gaussian beam.
doi:10.1109/TAP.2016.2593932

17. Bhuiyan, M. D. S. and N. C. Karmakar, "Defected ground structures for microwave applications," Wiley Encyclopedia of Electrical and Electronics Engineering, 1-31, 2014.

18. Balanis, C. A., Antenna theory: Analysis and Design, 4th Edition, JohnWiley & Sons, Inc, Canada, 2016.

19. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705, 2003.
doi:10.1049/el:20030495

20. Han, W., X. Zhou, J. Ouyang, Y. Li, R. Long, and F. Yang, "A six-port MIMO antenna system with high isolation for 5GHz WLAN access points," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 880-883, 2014.
doi:10.1109/LAWP.2014.2310739

21. Malviya, L., R. K. Panigrahi, and M. V. Kartikeyan, "Circularly polarized 2 × 2 MIMO antenna for WLAN applications," Progress In Electromagnetics Research C, Vol. 66, 97-107, 2016.
doi:10.2528/PIERC16051905

22. Costa, J. R., E. B. Lima, C. R. Medeiros, and C. A. Fernandes, "Evaluation of a new wideband slot array for MIMO performance enhancement in indoor WLANs," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1200-1206, 2011.
doi:10.1109/TAP.2011.2109685

23. Malviya, L. D., R. K. Panigrahi, and M. V. Kartikeyan, "A 2 × 2 dual-band MIMO antenna with polarization diversity for wireless applications," Progress In Electromagnetics Research C, Vol. 61, 91-103, 2016.
doi:10.2528/PIERC15110401