Vol. 86
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-11-25
Compact, Broadband and Reliable Lateral MEMS Switching Networks for 5G Communications
By
Progress In Electromagnetics Research M, Vol. 86, 163-171, 2019
Abstract
The design, development and characterization of broadband (1-30 GHz) microelectromechanical systems (MEMS) based electrostatically driven lateral switching networks are presented in this paper. Initially, single switch performances are optimized, and later it is used to develop different switching networks like single-pole-double-throw (SPDT), single-pole-three-throw (SP3T), and single-pole-six-throw (SP6T). All switches are extensively characterized including reliability testing. Switching networks demonstrate measured return loss of better than 21 dB (11.4 dB) with worst case insertion loss of 0.67 dB (~5 dB) and isolation of better than 31 dB (17.7 dB) at 3.5 GHz (28 GHz) for 5G communications. Switching networks tested for > 1 billion cycles with 1 W of RF power are found to be operational. Maximum fabricated switch (SP6T) area is ~0.7 mm2 including bias lines and pads.
Citation
Sukomal Dey, Shiban Kishen Koul, Ajay K. Poddar, and Ulrich L. Rohde, "Compact, Broadband and Reliable Lateral MEMS Switching Networks for 5G Communications," Progress In Electromagnetics Research M, Vol. 86, 163-171, 2019.
doi:10.2528/PIERM19091703
References

1. Liu, A. Q., RF MEMS Switches and Integrated Switching Circuits, Springer, New York, Mar. 2010.
doi:10.1007/978-0-387-46262-2

2. Yamane, D., W. Sun, H. Seita, S. Kawasaki, H. Fujita, and H. Toshiyoshi, "A Ku-band dual-SPDT RF-MEMS switch by double-side SOI bulk micromachining," Journal of Microelectromechanical System, Vol. 20, No. 5, 1211-1221, 2011.
doi:10.1109/JMEMS.2011.2162490

3. Dey, S. and S. K. Koul, "Systematic measurement of high isolation DC-20 GHz miniature MEMS SPDT switch," Microw. and Opti. Techno Lett., Vol. 58, No. 5, 1154-1159, 2016.
doi:10.1002/mop.29744

4. Dey, S., S. K. Koul, A. K. Poddar, and U. L. Rohde, "Extensive performance evaluations of RF MEMS single-pole-multi-throw (SP3T to SP14T) switches up to X-band frequency," J. Micromech. Microeng., Vol. 27, No. 1, 1-9, 2016.

5. Lee, J., C. H. Je, S. Kang, and C. A. Choi, "A low-loss single-pole six-throw switch based on compact RF MEMS switches," IEEE Trans. Microw.Theory Techn., Vol. 53, No. 11, 3335-3344, 2005.
doi:10.1109/TMTT.2005.855746

6. Koul, S. K., S. Dey, A. K. Poddar, and U. L. Rohde, "Reliable and compact 3-bit and 4-bit phase shifters using MEMS SP4T and SP8T switches," IEEE J. Microelectromech. Syst., Vol. 27, No. 1, 113-124, 2018.
doi:10.1109/JMEMS.2017.2782780