Vol. 89
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-02-01
Singular Points Meshing Direct Method for Computing the Chaff Radar Cross Section
By
Progress In Electromagnetics Research M, Vol. 89, 131-139, 2020
Abstract
An applicable and convenient method is critical for calculating the RCS (Radar Cross Sections) of chaff clouds. An improved method based on direct method [18] is proposed in this paper to promote efficiency, which is called SPMDM (Singular Points Meshing Direct Method). The tanh-sinh method is applied in SPMDM to compute the complex singular function in which the integral domain is meshed by the singular points. The practicability and accuracy of the SPMDM are confirmed through comparison with direct method. Results indicate that the SPMDM can significantly decrease calculation time and increase computing efficiency, especially in large-scale case or small relative error region.
Citation
Chuan Yin, Pengquan Zhang, and Zhonghai Zhang, "Singular Points Meshing Direct Method for Computing the Chaff Radar Cross Section," Progress In Electromagnetics Research M, Vol. 89, 131-139, 2020.
doi:10.2528/PIERM19112102
References

1. Peyton, Z. and J. R. Peebles, "Bistatic radar cross sections of chaff," IEEE Transaction on Aerospace and Electronic Systems, Vol. 20, No. 2, 128-140, 1984.        Google Scholar

2. Sun, P., Q. Cai, J. Tang, et al. "On spreading chaff cloud for countering the terminal guidance missile," IEEE Cie International Conference on Radar. IEEE, 845-849, 2012.        Google Scholar

3. Ceperuelo, M., M. C. Llasat, L. L´opez, et al. "Study of 11 September 2004 hailstorm event using radar identification of 2-D systems and 3-D cells," Advances in Geosciences, 7, 2006.        Google Scholar

4. Martner, B. E., J. D. Marwitz, and R. A. Kropfli, "Radar observations of transport and diffusion in clouds and precipitation using TRACIR," Journal of Atmospheric & Oceanic Technology, Vol. 9, No. 3, 226-241, 1992.
doi:10.1175/1520-0426(1992)009<0226:ROOTAD>2.0.CO;2        Google Scholar

5. Klimowski, B. A., R. Becker, E. A. Betterton, et al. "The 1995 Arizona program: Toward a better understanding of winter storm precipitation development in mountainous terrain," Bulletin of the American Meteorological Society, Vol. 79, No. 5, 799-813, 1998.
doi:10.1175/1520-0477(1998)079<0799:TAPTAB>2.0.CO;2        Google Scholar

6. Tang, B., K. Y. Guo, J. P. Wang, et al. "The correlation characteristics of channel matrix of chaff-supported MIMO system," IEEE Ant. & Wireless Propagat. Letts., Vol. 13, 1509-1512, 2014.
doi:10.1109/LAWP.2014.2343332        Google Scholar

7. Tang, B., H. M. Li, and X. Q. Sheng, "Jamming recognition method based on the full polarisation scattering matrix of chaff clouds," IET Microwaves Antennas & Propagation, Vol. 6, No. 13, 1451-1460, 2012.
doi:10.1049/iet-map.2012.0297        Google Scholar

8. Hang, H., Z. Tong, S. Chai, and Y. Zhang, "Experimental and numerical study of chaff cloud kinetic performance under impact of high speed airflow," Chinese Journal of Aeronautics, Vol. 31, No. 11, 2080-2092, 2018.
doi:10.1016/j.cja.2018.08.002        Google Scholar

9. Li, Z. H. and L. S. Wang, "Modeling study on holistic kinetic performance of chaff cloud," Journal of System Simulation, Vol. 21, No. 4, 928-877, 2009.        Google Scholar

10. Li, Z. H., J. Liang, S. X. Li, et al. "Computing study on holistic aerodynamics of chaff cloud covering various flow regimes," Acta Aerodynamica Sinica, Vol. 29, No. 1, 59-67, 2011.        Google Scholar

11. Lv, M. M., "Motion characteristics of chaff cloud in the air," Electronic Component & Device Applications, 2012.        Google Scholar

12. Feng, D. J., X. S. Wang, and J. Q. Liu, "Jamming effect analysis of chaff cloud on ground-based radar and its application," Modern Radar, 2010.        Google Scholar

13. VanVleck, J. H., F. BIoch, and M. Hammermesh, "Theory of radar reflections from wires and thin metallic strips," Journal of Applied Physics, Vol. 18, No. 3, 274-294, 1947.
doi:10.1063/1.1697649        Google Scholar

14. Dike, S. H. and D. D. King, "The absorption gain and backscattering cross section of the cylindrical antenna," Proceeding of IRE, Vol. 40, No. 7, 853-860, 1952.
doi:10.1109/JRPROC.1952.273853        Google Scholar

15. Tai, C. T., "Electromagnetic backscattering from cylindrical wires," Journal of Applied Physics, Vol. 23, 909-916, 1952.
doi:10.1063/1.1702329        Google Scholar

16. Cassedy, E. S. and J. Fainberg, "Back scattering cross sections of cylindrical wires of finite conductivity," IRE Transactions on Antennas and Propagation, Vol. 8, No. 1, 1-70, 1960.
doi:10.1109/TAP.1960.1144803        Google Scholar

17. De Bettencourt, J. T., "Bistatic cross sections of cylindrical wires," Sci. Rep. Inc., Needham, MA, 1961.        Google Scholar

18. Ufimtsev, P. Ya., "Diffraction of plane electromagnetic waves by a thin cylindrical conductor," Radio Eng. Electron. Phys., Vol. 7, No. 3, 241-249, 1962.        Google Scholar

19. Fialkovskii, A. T., "Scattering of plane electromagnetic waves by a thin cylindrical conductor of finite length," Soviet Phys. Tech. Phys., Vol. 11, No. 1, 1300-1304, 1967.        Google Scholar

20. Einarsson "The current distribution on cylindrical antennas of arbitrary length," Trans. Roy, Inst. Tech. Stockholm, 1963.        Google Scholar

21. Hallen, E., Electromagnetic Theory, Wiley, New York, 1962.

22. Dedrick, K. G., A. R. Hessing, and G. L. Johnson, "Bistatic radar scattering by randomly oriented wires," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 3, 420-426, 1981.
doi:10.1109/TAP.1978.1141862        Google Scholar

23. Ashrafi, D., H. Uberall, and A. Nagl, "The resonance structure of the bistatic radar scattering cross section of randomly oriented dipoles," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 7, 975-994, 1992.        Google Scholar

24. Guo, Y. and H. Uberall, "Bistatic radar scattering by a chaff cloud," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 7, 837-841, 1992.
doi:10.1109/8.155750        Google Scholar

25. Cross, J. L., "Response of arrays to stochastic fields,", Ph. D. Dissertatio, University of Florida, Gainesville, 1969.        Google Scholar

26. Marcus, S. W., "Bistatic RCS of spherical chaff clouds," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4091-4099, 2015.
doi:10.1109/TAP.2015.2452963        Google Scholar

27. Pinchot, J. L., O. Bechu, and P. Pouliguen, "A chaff cloud modelisation," IEEE International Symposium on Antenna Technology & Applied Electromagnetics, 2017.        Google Scholar

28. Butter, B. C. and F. Chaff, "Communications, radar and signal processing," IEEE Proceedings, Vol. 129, No. 3, 197-201, 1982.        Google Scholar

29. Takahasi, H. and M. Mori, "Double exponential formulas for numerical integration," European Mathematical Society Publishing House, Vol. 9, No. 3, 721-741, 1973.        Google Scholar

30. Baileya, D. H., K. Jeyabalanb, and X. S. Li, "A comparison of three high-precision quadrature schemes," Experimental Mathematics, Vol. 14, No. 3, 317-329, 2005.
doi:10.1080/10586458.2005.10128931        Google Scholar

31. Baileya, D. H., Borwein, and M. Jonathan, "Highly parallel, high-precision numerical integration,", Lawrence Berkeley National Laboratory, 2005.
doi:10.1080/10586458.2005.10128931        Google Scholar