Vol. 97
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-07
Design Analysis of One-Dimensional Photonic Crystal Based Structure for Hemoglobin Concentration Measurement
By
Progress In Electromagnetics Research M, Vol. 97, 77-86, 2020
Abstract
In this manuscript, a porous one-dimensional Photonic Crystal (1D-PhC) based sensor is designed for bio-chemical sensing application (i.e. hemoglobin concentration). The alternate layers of silicon are considered for design optimization, where, the porosity is introduced to obtain the desired index contrast value. The sensing capability of the proposed design is enhanced by modifying the dispersion property of the structure. For this, a defect middle layer is deliberately introduced. The number of layers, defect layer optical thickness and porosity values are optimized to confine a defect mode of desired wavelength. Finally, the detailed analysis of proposed structure is carried out. This provides the average sensitivity of around 323nm/RIU (0.05nm/(g/L) along with considerably higher FOM of 517RIU-1.
Citation
Amit Kumar Goyal, "Design Analysis of One-Dimensional Photonic Crystal Based Structure for Hemoglobin Concentration Measurement," Progress In Electromagnetics Research M, Vol. 97, 77-86, 2020.
doi:10.2528/PIERM20080601
References

1. Seitz, W. R., "Chemical sensors based on fiber optics," Anal. Chem., Vol. 56, 16A, 1984.
doi:10.1021/ac00265a711        Google Scholar

2. Choi, C. J., et al., "Comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays," Analytical Biochemistry, Vol. 405, No. 1, 1-10, 2010.
doi:10.1016/j.ab.2010.06.009        Google Scholar

3. Ciminelli, C., et al., "Label free optical resonant sensors for biochemical applications," Prog. Quant. Electron., Vol. 37, 51-107, 2013.
doi:10.1016/j.pquantelec.2013.02.001        Google Scholar

4. Homola, J., et al., "Surface plasmon resonance sensors: Review," Sensors Actuators B, Vol. 54, 3-15, 1999.
doi:10.1016/S0925-4005(98)00321-9        Google Scholar

5. Karlsson, R. and R. Stahleberg, "Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities," Analytical Biochemistry, Vol. 228, No. 2, 274-280, 1995.
doi:10.1006/abio.1995.1350        Google Scholar

6. Saleh, E. A. and M. C. Teich, Fundamentals of Photonics, Wiley-Interscience, 2007.

7. Bornhop, J., "Micro volume index of refraction determinations by interferometric backscatter," Applied Optics, Vol. 34, No. 18, 3234-3239, 1995.
doi:10.1364/AO.34.003234        Google Scholar

8. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059        Google Scholar

9. Joannopoulos, J. D., et al., Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2008.

10. Goyal, A. K. and S. Pal, "Design and simulation of high sensitive gas sensor using a ring-shaped photonic crystal waveguide," Phys. Scr., Vol. 90, 025503, 2015.
doi:10.1088/0031-8949/90/2/025503        Google Scholar

11. Abd El-Aziz, O. A., et al., "One-dimensional defective photonic crystals for the sensing and detection of protein," Appl. Opt., Vol. 58, 8309-8315, 2019.
doi:10.1364/AO.58.008309        Google Scholar

12. Goyal, A. K. and S. Pal, "Design and simulation of high sensitive photonic crystal waveguide sensor," Optik, Vol. 126, No. 2, 240-243, 2015.        Google Scholar

13. Goyal, A. K., et al., "Realization of large-scale photonic crystal cavity-based devices," J. Micro./Nanolith. MEMS MOEMS, Vol. 15, No. 3, 31608, 2016.        Google Scholar

14. Chan, L. L., et al., "A method for identifying small-molecule aggregators using photonic crystal biosensor microplates," Journal of the Association for Laboratory Automation, Vol. 14, No. 6, 348-359, 2009.        Google Scholar

15. Goyal, A. K., et al., "Performance optimization of photonic crystal resonator," Opt. Quantum Electron., Vol. 48, 431, 2016.        Google Scholar

16. Heeres, J. T., et al., "Identifying modulators of protein-protein interactions using photonic crystal biosensors," Journal of the American Chemical Society, Vol. 131, No. 51, 18202, 2009.        Google Scholar

17. Goyal, A. K., et al., "Design and analysis of photonic crystal micro-cavity based optical sensor platform," AIP Conference Proceedings, Vol. 1724, 020005, 2016.        Google Scholar

18. Beutler, E., et al., "The definition of anemia: What is the lower limit of normal of the blood hemoglobin concentration," Blood, Vol. 107, 1747-1750, 2006.        Google Scholar

19. Ansarihadipour, H., et al., "Structural and spectroscopic changes of human hemoglobin during iron-mediated oxidative stress," J. Arak. Univ. Med. Sci., Vol. 14, No. 6, 10-18, 2012.        Google Scholar

20. El-Khozondar, H. J., et al., "Design of one dimensional refractive index sensor using ternary photonic crystal waveguide for plasma blood samples applications," Physica E: Low-dimensional Systems and Nanostructures, Vol. 111, 29-36, 2019.        Google Scholar

21. Goyal, A. K., et al., "Design analysis of Bloch surface wave based sensor for haemoglobin concentration measurement," Applied Nanoscience, 2020.        Google Scholar

22. Hao, J., et al., "Research on low-temperature blood tissues detection biosensor based on one-dimensional superconducting photonic crystal," Communications in Nonlinear Science and Numerical Simulation, Vol. 89, 105229, 2020.        Google Scholar

23. Khateib, F., et al., "Ultra-sensitive acoustic biosensor based on a 1D phononic crystal," Phys. Scr., Vol. 95, 075704, 2020.        Google Scholar

24. Sharma, A. K., "Plasmonic biosensor for detection of hemoglobin concentra-tion in human blood: Design considerations," J. Appl. Phys., Vol. 114, 044701, 2013.        Google Scholar

25. Lidiya, A. E., et al., "Detecting hemoglobin content blood glucose using surface plasmon resonance in D-shaped photonic crystal fiber," Opt. Fiber Technol., Vol. 50, 132-138, 2019.        Google Scholar

26. Swain, K. P. and G. Palai, "Estimation of human-hemoglobin using honeycomb structure: An application of photonic crystal," Optik, Vol. 127, 3333-3336, 2016.        Google Scholar

27. Pochi, Y., "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am., Vol. 67, No. 4, 423-438, 1977.        Google Scholar

28. Ghosh, G., Handbook of Thermo-optic Coefficients of Optical Materials with Applications, Academic Press, 1998.

29. Goyal, A. K., et al., "Porous photonic crystal structure for sensing applications," J. Nanophoton., Vol. 12, No. 4, 040501, 2018.        Google Scholar

30. Khaleque, A., et al., "Absorption enhancement in graphene photonic crystal structures," Applied Optics, Vol. 55, 2936-2942, 2016.        Google Scholar

31. Friebel, M., et al., "Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements," Journal of Biomedical Optics, Vol. 10, 064019–5, 2005.        Google Scholar

32. Friebel, M., et al., "Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250–1100 nm dependent on concentration," Appl. Opt., Vol. 45, 2838-2842, 2006.        Google Scholar

33. Barer, R., et al., "Refractometry and interferometry of living cells," J. Opt. Soc. Am., Vol. 47, No. 6, 545-556, 1957.        Google Scholar

34. Barer, R., et al., "Interference microscopy and mass determination," Nature, Vol. 169, 366, 1952.        Google Scholar

35. Barer, R., et al., "Refractometry of living cells: Part I. Basic principles," Quarterly Journal of Microscopical Science, Vol. s3-95, 399-423, 1954.        Google Scholar

36. White, I. M., et al., "On the performance quantification of resonant refractive index sensors," Opt. Express, Vol. 16, 1020-1028, 2008.        Google Scholar

37. Goyal, A. K., et al., "Design and analysis of omnidirectional solar spectrum reflector using one-dimensional photonic crystal," J. of Nanophotonics, Vol. 14, No. 2, 026005, 2020.        Google Scholar

38. Goyal, A. K., et al., "Performance analysis of Bloch surface wave-based sensor using transition metal dichalcogenides," Applied Nanoscience, 2020.        Google Scholar

39. Quyang, Q., et al., "Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor," Sci. Rep., Vol. 6, 28190, 2016.        Google Scholar

40. Rebhi, S. and M. Najjar, "High Q-factor optical filter with high refractive index sensitivity based on hourglass-shaped photonic crystal ring resonator," Optik, Vol. 202, 163663, 2020.        Google Scholar

41. Farmani, H., et al., "A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection," Physica E: Low-dimensional Systems and Nanostructures, Vol. 116, 113730, 2020.        Google Scholar