1. Zhao, W.-J., J. L.-W. Li, and K. Xiao, "Analysis of radiation characteristics of conformal microstrip arrays using adaptive integral method," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 1176-1181, 2012.
doi:10.1109/TAP.2011.2173135 Google Scholar
2. Li, J. L.-W., Y.-N. Li, T.-S. Yeo, J. R. Mosig, and O. J. F. Martin, "Addendum: ``A broadband and high-gain metamaterial microstrip antenna''," Appl. Phys. Lett., Vol. 96, 164101, 2010; Appl. Phys. Lett., Vol. 99, 159901, 2011.
doi:10.1063/1.3396984 Appl. Phys. Lett., Vol. 99, 159901, 2011&doi=10.1063/1.3396984' target='_blank'> Google Scholar
3. Abdulhasan, R. A., R. Alias, K. N. Ramli, F. C. Seman, and R. A. Abd-Alhameed, "High gain CPW-fed UWB planar monopole antenna-based compact uniplanar frequency selective surface for microwave imaging," Int. J. RF Microw. Comput.-Aided Eng., Vol. 29, No. 8, Art. No. e21757, 2019. Google Scholar
4. Zhao, W.-J., L.-W. Li, and K. Xiao, "Analysis of electromagnetic scattering and radiation from finite microstrip structures using an EFIE-PMCHWT formulation," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2468-2473, 2010.
doi:10.1109/TAP.2010.2048867 Google Scholar
5. Yuan, N., T. S. Yeo, X. C. Nie, Y. B. Gan, and L.-W. Li, "Analysis of probe-fed conformal microstrip antennas on finite ground plane and substrate," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 554-563, 2006.
doi:10.1109/TAP.2005.863115 Google Scholar
6. Yin, W.-Y., X.-T. Dong, J. F. Mao, and L.-W. Li, "Average power handling capability of finite-ground thin film microstrip lines over ultrawide frequency ranges," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 10, 715-717, 2005.
doi:10.1109/LMWC.2005.856829 Google Scholar
7. Gao, S.-C., L.-W. Li, T.-S. Yeo, and M.-S. Leong, "A broad-band dual-polarized microstrip patch antenna with aperture coupling," IEEE Trans. Antennas Propag., Vol. 51, No. 4, 898-900, 2003.
doi:10.1109/TAP.2003.811080 Google Scholar
8. Yuan, N., T.-S. Yeo, X. C. Nie, and L.-W. Li, "A fast analysis of scattering and radiation of large microstrip antenna arrays," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2218-2226, 2003. A correction is also made here (appearing in IEEE T-AP, Vol. 52, No. 7, 1921, Jul. 2004.).
doi:10.1109/TAP.2003.811082 Google Scholar
9. Tahir, F. A., T. Arshad, S. Ullah, and J. A. Flint, "A novel FSS for gain enhancement of printed antennas in UWB frequency spectrum," Microw. Opt. Technol. Lett., Vol. 59, No. 10, 2698-2704, Oct. 2017.
doi:10.1002/mop.30789 Google Scholar
10. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305 Google Scholar
11. Yuan, Y., X. Xi, and Y. Zhao, "Compact UWB FSS reflector for antenna gain enhancement," IET Microw., Antennas Propag., Vol. 13, No. 10, 1749-1755, Aug. 2019.
doi:10.1049/iet-map.2019.0083 Google Scholar
12. Rezaee, P., M. Tayarani, and R. Knöchel, "Active learning method for the determination of coupling factor and external Q in microstrip filter design," Progress In Electromagnetics Research, Vol. 120, 459-479, 2011.
doi:10.2528/PIER11071901 Google Scholar
13. Al-Gburi, J. A., I. B. M. Ibrahim, M. Y. Zeain, and Z. Zakaria, "Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector," IEEE Access, Vol. 8, 92697-92707, 2020. Google Scholar
14. Asimakis, N. P., I. S. Karanasiou, and N. K. Uzunoglu, "Non-invasive microwave radiometric system for intracranial applications: A study using the conformal L-notch microstrip patch antenna," Progress In Electromagnetics Research, Vol. 117, 83-101, 2011.
doi:10.2528/PIER10122208 Google Scholar
15. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, and D. B. Lin, "Low profile dual band H-slotted DGS based antenna design using ANN for K/Ku band applications," 2021 8th Int. Conf. Electr. Electron. Eng. ICEEE 2021, 2021. Google Scholar
16. Nakmouche, M. F., H. Taher, D. E. Fawzy, and A. M. M. A. Allam, "Development of a wideband substrate integrated waveguide bandpass filter using H-slotted DGS," The 6th IEEE Conference on Antenna Measurements & Applications (CAMA), Oct. 2019. Google Scholar
17. Nakmoucheand, M. F. and M. Nassim, "Impact of metamaterials DGS in PIFA antennas for IoT terminals design," The 6th International Conference on Image and Signal Processing and Their Applications, Nov. 2019. Google Scholar
18. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, H. Taher, and M. F. A. Sree, "Dual band SIW patch antenna based on H-slotted DGS for Ku band application," The 7th IEEE International Conference on Electrical and Electronics Engineering, Apr. 2020. Google Scholar
19. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770
20. Sakran, F. and Y. Neve-Oz, "Absorbing frequency-selective surface for the mm wave range," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2649-2655, 2008.
doi:10.1109/TAP.2008.924701 Google Scholar
21. Vardaxoglou, J. C., Frequency Selective Surfaces: Analysis and Design, Wiley, 1997.
22. Kim, J. H., C.-H. Ahn, and J.-K. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 1164-1167, Jan. 2016.
doi:10.1109/TAP.2016.2518650 Google Scholar
23. Sarkhel, A. and S. R. B. Chaudhuri, "Enhanced-gain printed slot antenna using an electric metasurface superstrate," Appl. Phys. A, Vol. 122, 934, 2016.
doi:10.1007/s00339-016-0464-2 Google Scholar
24. Fernandes, E. M. F., M. W. B. da Silva, L. da Silva Briggs, A. L. P. de Siqueira Campos, H. X. de Araújo, I. R. S. Casella, C. E. Capovilla, V. P. R. M. Souza, and L. J. de Matos, "2.4-5.8 GHz dual-band patch antenna with FSS reflector for radiation parameters enhancement," AEU International Journal of Electronics and Communications, Vol. 108, 235-241, 2019.
doi:10.1016/j.aeue.2019.06.021 Google Scholar
25. Tilak, G. B. G., S. K. Kotamraju, B. T. P. Madhav, K. Ch. Sri Kavya, and M. Venkateswara Rao, "Dual sensed high gain heart shaped monopole antenna with planar artificial magnetic conductor," Journal of Engineering Science and Technology, Jun. 2020. Google Scholar
26. Zhai, H., K. Zhang, S. Yang, and D. Feng, "A low-profile dual-band dual-polarized antenna with an AMC surface for WLAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2692-2695, 2017.
doi:10.1109/LAWP.2017.2741465 Google Scholar
27. Liu, Q., H. Liu, W. He, and S. He, "A low-profile dual-band dual-polarized antenna with an AMC reflector for 5G communications," IEEE Access, Vol. 8, 24072-24080, 2020.
doi:10.1109/ACCESS.2020.2970473 Google Scholar
28. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, D. B. Lin, and M. F. A. Sree, "Development of H-slotted DGS based dual band antenna using ANN for 5G applications," 15th Eur. Conf. Antennas Propag. (EuCap), 2021. Google Scholar
29. El Misilmani, H., T. Naous, and S. Al Khatib, "A review on the design and optimization of antennas using machine learning algorithms and techniques," International Journal of RF and Microwave Computer-Aided Engineering, 2020. Google Scholar
30. Kumar, R., P. Kumar, S. Singh, and R. Vijay, "Fast and accurate synthesis of frequency reconfigurable slot antenna using back propagation network," AEU - Int. J. Electron. Commun., Vol. 112, 152962, 2019.
doi:10.1016/j.aeue.2019.152962 Google Scholar
31. Alemaryeen, A. and S. Noghanian, "Crumpling effects and specific absorption rates of flexible AMC integrated antennas," IET Microw., Antennas Propag., Vol. 12, No. 4, 627-635, Mar. 2018.
doi:10.1049/iet-map.2017.0652 Google Scholar
32. Jiang, Z. H., Z. Cui, T. Yue, Y. Zhu, and D. H. Werner, "Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks," IEEE Trans. Biomed. Circuits Syst., Vol. 11, No. 4, 920-932, Aug. 2017.
doi:10.1109/TBCAS.2017.2671841 Google Scholar
33. Abbasi, M. A. B., S. S. Nikolaou, M. A. Antoniades, M. N. Stevanovic, and P. Vryonides, "Compact EBG-backed planar monopole for BAN wearable applications," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 453-463, Feb. 2017.
doi:10.1109/TAP.2016.2635588 Google Scholar
34. Jiang, Z. H., D. E. Brocker, P. E. Sieber, and D. H. Werner, "A compact, low-profile metasurface-enabled antenna for wearable medical body area network devices," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4021-4030, Aug. 2014.
doi:10.1109/TAP.2014.2327650 Google Scholar
35. Raa, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 524-531, Feb. 2013.
doi:10.1109/TAP.2012.2223449 Google Scholar
36. Cook, B. S. and A. Shamim, "Utilizing wideband AMC structure for high-gain inkjet-printed antennas on lossy paper substrate," IEEE Antennas Wireless Propag. Lett., Vol. 12, 76-79, 2013.
doi:10.1109/LAWP.2013.2240251 Google Scholar
37. Ashyap, A. Y. I., et al. "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2550-2553, 2017.
doi:10.1109/LAWP.2017.2732355 Google Scholar
38. Poffelie, L. A. Y., P. J. Soh, S. Yan, and G. A. E. Vandenbosch, "A highfidelity all-textile UWB antenna with low back radiation for off-body WBAN applications," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 757-760, Feb. 2016.
doi:10.1109/TAP.2015.2510035 Google Scholar
39. Simorangkir, R. B. V. B., A. Kiourti, and K. P. Esselle, "UWB wearable antenna with a full ground plane based on PDMS-embedded conductive fabric," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 3, 493-496, Mar. 2018.
doi:10.1109/LAWP.2018.2797251 Google Scholar