1. Chia, M. Y. W., L. Brás, N. B. Carvalho, Pinho, L. Kulas, and K. Nyka, "A review of antennas for indoor positioning systems," International Journal of Antennas and Propagation, Vol. 2012, 953269, 2012. Google Scholar
2. Cheng, C.-H. and Y. Yan, "Indoor positioning system for wireless sensor networks based on two-stage fuzzy inference," International Journal of Distributed Sensor Networks, Vol. 14, May 2018. Google Scholar
3. Garcia, N., H. Wymeersch, E. G. Larsson, A. M. Haimovich, and M. Coulon, "Direct localization for massive MIMO," IEEE Transactions on Signal Processing, Vol. 65, No. 10, 2475-2487, 2017.
doi:10.1109/TSP.2017.2666779 Google Scholar
4. Guerra, A., F. Guidi, and D. Dardari, "Position and orientation error bound for wideband massive antenna arrays," 2015 IEEE International Conference on Communication Workshop (ICCW), 853-858, 2015.
doi:10.1109/ICCW.2015.7247282 Google Scholar
5. Savic, V. and E. G. Larsson, "Fingerprinting-based positioning in distributed massive MIMO systems," 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), 1-5, 2015. Google Scholar
6. Guidi, F., A. Guerra, and D. Dardari, "Personal mobile radars with millimeter-wave massive arrays for indoor mapping," IEEE Transactions on Mobile Computing, Vol. 15, No. 6, 1471-1484, 2016.
doi:10.1109/TMC.2015.2467373 Google Scholar
7. Witrisal, K., Meissner, E. Leitinger, Y. Shen, C. Gustafson, F. Tufvesson, K. Haneda, D. Dardari, A. F. Molisch, A. Conti, and M. Z. Win, "High-accuracy localization for assisted living: 5G systems will turn multipath channels from foe to friend," IEEE Signal Processing Magazine, Vol. 33, No. 2, 59-70, 2016.
doi:10.1109/MSP.2015.2504328 Google Scholar
8. Qiu, L., X. Liang, and Z. Huang, "Patl: A RFID tag localization based on phased array antenna," Scientific Reports, Vol. 7, No. 1, 44183, 2017.
doi:10.1038/srep44183 Google Scholar
9. Du, H., C. Zhang, Q. Ye, W. Xu, L. Kibenge, and K. Yao, "A hybrid outdoor localization scheme with high-position accuracy and low-power consumption," EURASIP Journal on Wireless Communications and Networking, Vol. 2018, No. 1, 4, 2018.
doi:10.1186/s13638-017-1010-4 Google Scholar
10. Alibakhshikenari, M., F. Babaeian, B. S. Virdee, S. Aïssa, L. Azpilicueta, C. H. See, A. A. Althuwayb, I. Huynen, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "A comprehensive survey on `various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems'," IEEE Access, Vol. 8, 192965-193004, 2020.
doi:10.1109/ACCESS.2020.3032826 Google Scholar
11. Alibakhshikenari, M., B. S. Virdee, H. Benetatos, E. M. Ali, M. Soruri, M. Dalarsson, M. Naser-Moghadasi, C. H. See, A. Pietrenko-Dabrowska, S. Koziel, S. Szczepanski, and E. Limiti, "An innovative antenna array with high inter element isolation for sub-6 GHz 5G MIMO communication systems," Scientific Reports, Vol. 12, No. 1, 7907, 2022.
doi:10.1038/s41598-022-12119-2 Google Scholar
12. Alibakhshikenari, M., B. S. Virdee, Shukla, C. H. See, R. A. Abd-Alhameed, F. Falcone, K. Quazzane, and E. Limiti, "Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems," IET Microwaves, Antennas & Propagation, Vol. 14, No. 3, 183-188, 2020.
doi:10.1049/iet-map.2019.0362 Google Scholar
13. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "Surface wave reduction in antenna arrays using metasurface inclusion for MIMO and SAR systems," Radio Science, Vol. 54, No. 11, 1067-1075, 2019.
doi:10.1029/2019RS006871 Google Scholar
14. Alibakhshikenari, M., B. S. Virdee, Shukla, C. H. See, R. Abd-Alhameed, M. Khalily, F. Falcone, and E. Limiti, "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 7, No. 9, 2018.
doi:10.3390/electronics7090198 Google Scholar
15. Ourir, A., A. Mokh, R. Khayatzadeh, M. Kamoun, A. Tourin, A. Fink, and J. de Rosny, "Angular localization of wideband sources using a single port metamaterial receive antenna," 2022 16th European Conference on Antennas and Propagation (EuCAP), 1-4, 2022. Google Scholar
16. Liu, L., C. Caloz, and T. Itoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Electronics Letters, Vol. 38, No. 2, 1414-1416, Nov. 2002. Google Scholar
17. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, Jun. 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
18. Pendry, J., A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, Nov. 1999. Google Scholar
19. Abdeddaim, R., A. Ourir, and J. de Rosny, "Realizing a negative index metamaterial by controlling hybridization of trapped modes," Phys. Rev. B, Vol. 83, 033101, Jan. 2011.
doi:10.1103/PhysRevB.83.033101 Google Scholar
20. Ourir, A., R. Abdeddaim, and J. de Rosny, "Double-T metamaterial for parallel and normal transverse electric incident waves," Opt. Lett., Vol. 36, 1527-1529, May 2011.
doi:10.1364/OL.36.001527 Google Scholar
21. Ourir, A. and H. H. Ouslimani, "Negative refractive index in symmetric cut-wire pair metamaterial," Applied Physics Letters, Vol. 98, No. 11, 113505, 2011.
doi:10.1063/1.3565160 Google Scholar
22. Enoch, S., G. Tayeb, Sabouroux, N. Guérin, and Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 213902, Nov. 2002. Google Scholar
23. Ourir, A., A. de Lustrac, and J.-M. Lourtioz, "All-metamaterial-based subwavelength cavities (lambda/60) for ultrathin directive antennas," Applied Physics Letters, Vol. 88, No. 8, 084103, 2006.
doi:10.1063/1.2172740 Google Scholar
24. Alibakhshikenari, M., E. M. Ali, M. Soruri, M. Dalarsson, M. Naser-Moghadasi, B. S. Virdee, C. Stefanovic, A. Pietrenko-Dabrowska, S. Koziel, S. Szczepanski, and E. Limiti, "A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems," IEEE Access, Vol. 10, 3668-3692, 2022.
doi:10.1109/ACCESS.2021.3140156 Google Scholar
25. Alibakhshikenari, M., B. S. Virdee, Shukla, N. O. Parchin, L. Azpilicueta, C. H. See, R. A. Abd-Alhameed, F. Falcone, I. Huynen, T. A. Denidni, and E. Limiti, "Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection," IEEE Access, Vol. 8, 174667-174678, 2020.
doi:10.1109/ACCESS.2020.3025672 Google Scholar
26. Jouveaud, C., A. Ourir, and J. Rosny, "Surface waves radiation by finite arrays of magnetoelectric resonators," Progress In Electromagnetics Research, Vol. 132, 177-198, 2012.
doi:10.2528/PIER12071009 Google Scholar
27. Jouvaud, C., J. de Rosny, and A. Ourir, "Adaptive metamaterial antenna using coupled tunable split-ring resonators," Electronics Letters, Vol. 49, 518-519, Apr. 2013.
doi:10.1049/el.2013.0398 Google Scholar
28. Jouvaud, C., A. Ourir, and J. Rosny, "Smart tuning," Electronics Letters, Vol. 49, No. 8, 512, 2013.
doi:10.1049/el.2013.0398 Google Scholar
29. Ourir, A., G. Lerosey, F. Lemoult, M. Fink, and J. de Rosny, "Far field subwavelength imaging of magnetic patterns," Applied Physics Letters, Vol. 101, No. 11, 111102, 2012.
doi:10.1063/1.4748974 Google Scholar
30. Jouvaud, C., A. Ourir, and J. de Rosny, "Far-field imaging with a multi-frequency metalens," Applied Physics Letters, Vol. 104, No. 24, 2014.
doi:10.1063/1.4882277 Google Scholar
31. Schurig, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, No. 4, 041109, 2006.
doi:10.1063/1.2166681 Google Scholar
32. Zhou, L., H. Ouslimani, A. Priou, A. Ourir, and O. Maas, "Understanding the behavior of miniaturized metamaterial-based dipole antennas in leaky wave regime," Applied Physics A, Vol. 106, No. 1, 145-149, 2012.
doi:10.1007/s00339-011-6656-x Google Scholar