Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-30
Synthesis of Planar Antenna Arrays Based on Subarray Division Using the ICOK-Hybrid Algorithm
By
Progress In Electromagnetics Research C, Vol. 164, 78-88, 2026
Abstract
In modern wireless systems, such as radar, satellite communication and 5G communication, planar antenna arrays can achieve high-performance radiation characteristics. The synthesis of these arrays that can produce patterns with low peak sidelobe levels (PSLL) is critical for improving the performance of the antenna system. However, the synthesis of large-scale planar arrays presents a complex nonlinear optimization challenge because of the vast number of variables which leads to high design complexity. To address these issues, an improved hybrid optimization method which is called ICOK-Hybrid Algorithm is proposed. The hybrid algorithm integrates Invasive Weed Optimization (IWO), Convex Optimization (CO) and K-means clustering. The convex optimization is used to efficiently optimize the excitation amplitudes and phases while the IWO algorithm is used to refine the positions of the array elements. Furthermore, an innovative subarray partitioning strategy based on an improved K-means algorithm was introduced to group elements with similar excitations which significantly reduces the design complexity and hardware costs. Numerical results demonstrate that the proposed algorithm achieves a significantly lower PSLL compared with the results obtained by other methods. The practical feasibility and reliability of the proposed approach are further verified by full-wave electromagnetic simulation software CST.
Citation
Chenxin Ren, Hua Guo, Yang Xiao, Peng Song, and Lijian Zhang, "Synthesis of Planar Antenna Arrays Based on Subarray Division Using the ICOK-Hybrid Algorithm," Progress In Electromagnetics Research C, Vol. 164, 78-88, 2026.
doi:10.2528/PIERC25101102
References

1. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, Hoboken, 2016.

2. Godara, L. C., "Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations," Proceedings of the IEEE, Vol. 85, No. 8, 1195-1245, 1997.
doi:10.1109/5.622504        Google Scholar

3. Godara, L. C., "Applications of antenna arrays to mobile communications. I. Performance improvement, feasibility, and system considerations," Proceedings of the IEEE, Vol. 85, No. 7, 1031-1060, 1997.
doi:10.1109/5.611108        Google Scholar

4. Abbak, Mehmet and Ibrahim Tekin, "RFID coverage extension using microstrip-patch antenna array [wireless corner]," IEEE Antennas and Propagation Magazine, Vol. 51, No. 1, 185-191, 2009.
doi:10.1109/map.2009.4939065        Google Scholar

5. Oh, Kwan Jin, Hee Young Lee, Seon Joo Kim, Young Seek Chung, and Changyul Cheon, "A study on wideband adaptive beamforming using Taylor weighting and LSMI algorithm," Transactions of the Korean Institute of Electrical Engineers, Vol. 62, No. 3, 380-386, 2013.
doi:10.5370/kiee.2013.62.3.380        Google Scholar

6. Saputra, Yussi Perdana, Folin Oktafiani, Yuyu Wahyu, and Achmad Munir, "Side lobe suppression for X-band array antenna using Dolph-Chebyshev power distribution," 2016 22nd Asia-Pacific Conference on Communications (APCC), 86-89, Yogyakarta, Indonesia, 2016.
doi:10.1109/APCC.2016.7581524

7. Shen, Guojun, Yanheng Liu, Geng Sun, Tingting Zheng, Xu Zhou, and Aimin Wang, "Suppressing sidelobe level of the planar antenna array in wireless power transmission," IEEE Access, Vol. 7, 6958-6970, 2019.
doi:10.1109/access.2018.2890436        Google Scholar

8. Pandey, Hari Mohan, Ankit Chaudhary, and Deepti Mehrotra, "A comparative review of approaches to prevent premature convergence in GA," Applied Soft Computing, Vol. 24, 1047-1077, 2014.
doi:10.1016/j.asoc.2014.08.025        Google Scholar

9. Isernia, T., F. J. A. Pena, O. M. Bucci, M. D'Urso, J. F. Gomez, and J. A. Rodriguez, "A hybrid approach for the optimal synthesis of pencil beams through array antennas," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2912-2918, 2004.
doi:10.1109/TAP.2004.835130        Google Scholar

10. Khodier, Majid, "Comprehensive study of linear antenna array optimisation using the cuckoo search algorithm," IET Microwaves, Antennas & Propagation, Vol. 13, No. 9, 1325-1333, 2019.
doi:10.1049/iet-map.2018.5649        Google Scholar

11. Fang, Shutao, Weiming Li, Zhenghui Xue, and Wu Ren, "Synthesis of distributed array consisting of two subarrays via hybrid method of differential evolution optimization and convex optimization," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 2, 125-129, 2021.
doi:10.1109/lawp.2020.3035177        Google Scholar

12. Kerby, K. C. and J. T. Bernhard, "Sidelobe level and wideband behavior of arrays of random subarrays," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2253-2262, 2006.
doi:10.1109/tap.2006.879195        Google Scholar

13. Gong, Yu, Shaoqiu Xiao, Yu Zheng, and Bingzhong Wang, "An effective hybrid synthesis strategy of multibeam subarray," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2623-2632, 2022.
doi:10.1109/tap.2021.3118710        Google Scholar

14. Zhao, Jiayu, Jianming Huang, Yansong Cui, Naibo Zhang, Yuxuan Wang, and Zilai Wang, "Subarray partition based on sparse array weighted K-means clustering," Electronics Letters, Vol. 60, No. 18, e70042, 2024.
doi:10.1049/ell2.70042        Google Scholar

15. Ojaroudi, Mohammad, Changiz Ghobadi, and Javad Nourinia, "Small square monopole antenna with inverted T-shaped notch in the ground plane for UWB application," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 728-731, 2009.
doi:10.1109/lawp.2009.2025972        Google Scholar

16. Abdollahvand, M., H. R. Hassani, and G. R. Dadashzadeh, "Novel modified monopole antenna with band-notch characteristic for UWB application," IEICE Electronics Express, Vol. 7, No. 16, 1207-1213, 2010.
doi:10.1587/elex.7.1207        Google Scholar

17. Abdollahvand, Mousa, Yashar Zehforoosh, Banafsheh Marufi, P. Esmailzadeh Kaleybar, and Aliakbar Dastranj, "A novel UWB in-body printed microstrip feed monopole antenna with dual band-stop capabilities," Microwave and Optical Technology Letters, Vol. 66, No. 9, e34317, 2024.
doi:10.1002/mop.34317        Google Scholar

18. Abdollahvand, Mousa, Mohammadreza Khorshidi, Sima Sobhi-Givi, and Saptarshi Ghosh, "An innovative in-body adjustable triple-band notch UWB monopole antenna with improved bandwidth performance," Scientific Reports, Vol. 15, No. 1, 24538, 2025.
doi:10.1038/s41598-025-08981-5        Google Scholar

19. Yang, Xiaopeng, Wen Xi, Yuze Sun, Tao Zeng, Teng Long, and Tapan K. Sarkar, "Optimization of subarray partition for large planar phased array radar based on weighted K-means clustering method," IEEE Journal of Selected Topics in Signal Processing, Vol. 9, No. 8, 1460-1468, 2015.
doi:10.1109/jstsp.2015.2465306        Google Scholar

20. Chen, Kesong, Xiaohua Yun, Zishu He, and Chunlin Han, "Synthesis of sparse planar arrays using modified real genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1067-1073, 2007.
doi:10.1109/tap.2007.893375        Google Scholar

21. Liu, Heng, Hongwei Zhao, Weimei Li, and Bo Liu, "Synthesis of sparse planar arrays using matrix mapping and differential evolution," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1905-1908, 2016.
doi:10.1109/lawp.2016.2542882        Google Scholar

22. Dai, Dingcheng, Minli Yao, Hongguang Ma, Wei Jin, and Fenggan Zhang, "An asymmetric mapping method for the synthesis of sparse planar arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 70-73, 2018.
doi:10.1109/lawp.2017.2774498        Google Scholar

23. Tian, Xue, Bin Wang, Kui Tao, and Ke Li, "An improved synthesis of sparse planar arrays using density-weighted method and chaos sparrow search algorithm," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 5, 4339-4349, 2023.
doi:10.1109/tap.2023.3255401        Google Scholar

24. Yang, Jianhua, Feng Yang, Peng Yang, and Zhiyu Xing, "A hybrid approach for the synthesis of planar thinned arrays with sidelobes reduction," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 269-270, Montreal, QC, Canada, 2020.
doi:10.1109/IEEECONF35879.2020.9330320