Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-09
Design of a Radiation Error Correction Algorithm for Four-Wire Sounding Temperature Sensor
By
Progress In Electromagnetics Research C, Vol. 164, 174-185, 2026
Abstract
To ensure adequate ventilation, radiosonde temperature sensors are typically mounted on top of the device and directly exposed to solar radiation. However, this configuration makes the sensors highly susceptible to radiation-induced errors, which can significantly compromise temperature measurement accuracy. This study proposes a four-wire structural design for the radiosonde temperature sensor and evaluates its performance through computational fluid dynamics (CFD) simulations. The radiosonde follows a helical ascent trajectory, which causes the incident solar radiation on the sensor to vary continuously. This continuous variation makes the quantification and correction of radiation errors more difficult. The proposed four-wire design achieves favorable radiative thermal balance in three-dimensional space. It also demonstrates low sensitivity to changes in the ascent trajectory. This characteristic allows the correction model to be simplified by neglecting variations in the incident radiation direction. A coupled flow-structure thermal analysis is conducted under varying environmental conditions, including altitude, ascent velocity, and solar radiation intensity, to quantify the radiation error of the four-wire sensor. A neural network algorithm is then trained on the simulation data to develop a radiation error correction model. Experimental validation is performed using a platform comprising a full-spectrum solar simulator and a low-pressure wind tunnel. The experimental results yield a root mean square error (RMSE) of 0.159 K, mean absolute error (MAE) of 0.143 K, and correlation coefficient of 0.962 between simulated and corrected radiation errors, demonstrating the high accuracy of the proposed correction algorithm.} After correction, the average radiation error of the four-wire sensor decreases from 0.446 K to 0.143 K, substantially improving temperature measurement accuracy.
Citation
Yutong Liu, Renhui Ding, Zhengjie Ying, and Jiale Jiang, "Design of a Radiation Error Correction Algorithm for Four-Wire Sounding Temperature Sensor," Progress In Electromagnetics Research C, Vol. 164, 174-185, 2026.
doi:10.2528/PIERC25102802
References

1. Watt-Meyer, Oliver, Noah D. Brenowitz, Spencer K. Clark, Brian Henn, Anna Kwa, Jeremy McGibbon, W. Andre Perkins, and Christopher S. Bretherton, "Correcting weather and climate models by machine learning nudged historical simulations," Geophysical Research Letters, Vol. 48, No. 15, e2021GL092555, 2021.
doi:10.1029/2021gl092555        Google Scholar

2. Xu, Yangyang, Veerabhadran Ramanathan, and David G. Victor, "Global warming will happen faster than we think," Nature, Vol. 564, No. 7734, 30-32, 2018.
doi:10.1038/d41586-018-07586-5        Google Scholar

3. Balanyá, Joan, Josep M. Oller, Raymond B. Huey, George W. Gilchrist, and Luis Serra, "Global genetic change tracks global climate warming in drosophila subobscura," Science, Vol. 313, No. 5794, 1773-1775, 2006.
doi:10.1126/science.1131002        Google Scholar

4. Scher, S. and G. Messori, "How global warming changes the difficulty of synoptic weather forecasting," Geophysical Research Letters, Vol. 46, No. 5, 2931-2939, 2019.
doi:10.1029/2018gl081856        Google Scholar

5. Joseph, Jeyaraj Jency, Rajasekaran Meenal, Francis Thomas Josh, Prawin Angel Michael, Vinoth Kumar Krishnamoorthy, Giriprasad Chandran, and Selve Veerabathran, "Weather observation and forecasting using radiosonde," Telkomnika (Telecommunication Computing Electronics and Control), Vol. 20, No. 6, 1376-1383, 2022.
doi:10.12928/telkomnika.v20i6.24247        Google Scholar

6. Free, Melissa, Imke Durre, Enric Aguilar, Dian Seidel, Thomas C. Peterson, Robert E. Eskridge, James K. Luers, David Parker, Margaret Gordon, John Lanzante, et al. "Creating climate reference datasets: CARDS workshop on adjusting radiosonde temperature data for climate monitoring," Bulletin of the American Meteorological Society, Vol. 83, No. 6, 891-900, 2002.        Google Scholar

7. Free, Melissa, Dian J. Seidel, James K. Angell, John Lanzante, Imke Durre, and Thomas C. Peterson, "Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): A new data set of large-area anomaly time series," Journal of Geophysical Research: Atmospheres, Vol. 110, No. D22, 2005.
doi:10.1029/2005jd006169        Google Scholar

8. World Meteorological Organization Guide to Meteorological Instruments and Methods of Observation, Secretariat of the World Meteorological Organization, 1983.

9. Li, Zhen, Lijun Chang, Jiahui Lou, Yi Shen, and Haoming Yan, "Multi-scale analysis of the relationships between solar activity, CO2 and global surface temperature," Research in Astronomy and Astrophysics, Vol. 22, No. 9, 095019, 2022.
doi:10.1088/1674-4527/ac8339        Google Scholar

10. Heyd, Rodolphe, "One-dimensional systemic modeling of thermal sensors based on miniature bead-type thermistors," Sensors, Vol. 21, No. 23, 7866, 2021.
doi:10.3390/s21237866        Google Scholar

11. Segales, Antonio R., Phillip B. Chilson, and Jorge L. Salazar-Cerreño, "Considerations for improving data quality of thermo-hygrometer sensors on board unmanned aerial systems for planetary boundary layer research," Atmospheric Measurement Techniques, Vol. 15, No. 8, 2607-2621, 2022.
doi:10.5194/amt-15-2607-2022        Google Scholar

12. Liu, Yi, Junhua Wang, Peng Huo, Chenyu Shi, Ziang Liu, Yuquan Yan, Jincheng Yao, and Aimin Chang, "A novel design of fast response Mn-Ni-Cu-Fe-O microbead thermistors for radiosonde," Journal of Materials Science: Materials in Electronics, Vol. 34, No. 24, 1737, 2023.
doi:10.1007/s10854-023-11120-3        Google Scholar

13. Wang, Guoyan, Chun Hu, and Dezhi Zheng, "Theoretical and simulation analysis of a thin film temperature sensor error model for in situ detection in near space," Applied Sciences, Vol. 13, No. 10, 5954, 2023.
doi:10.3390/app13105954        Google Scholar

14. Kottmeier, Christoph, Andreas Wieser, Ulrich Corsmeier, Norbert Kalthoff, Philipp Gasch, Bastian Kirsch, Dörthe Ebert, Zbigniew Ulanowski, Dieter Schell, Harald Franke, Florian Schmidmer, Johannes Frielingsdorf, Thomas Feuerle, and Rudolf Hankers, "A new versatile dropsonde for atmospheric soundings–the KITsonde," Atmospheric Measurement Techniques, Vol. 18, No. 13, 3161-3178, 2025.
doi:10.5194/amt-18-3161-2025        Google Scholar

15. Abdunabiev, Shahbozbek, Chiara Musacchio, Andrea Merlone, Miryam Paredes, Eros Pasero, and Daniela Tordella, "Validation and traceability of miniaturized multi-parameter cluster radiosondes used for atmospheric observations," Measurement, Vol. 224, 113879, 2024.
doi:10.1016/j.measurement.2023.113879        Google Scholar

16. Lee, Sang-Wook, Eun Uk Park, Byung Il Choi, Jong Chul Kim, Sang-Bong Woo, Seongchong Park, Seung Gu Yang, and Yong-Gyoo Kim, "Dual temperature sensors with different emissivities in radiosondes for the compensation of solar irradiation effects with varying air pressure," Meteorological Applications, Vol. 25, No. 1, 49-55, 2018.
doi:10.1002/met.1668        Google Scholar

17. Lee, Sang-Wook, Sunghun Kim, Young-Suk Lee, Jae-Keun Yoo, Sungjun Lee, Suyong Kwon, Byung Il Choi, Jaewon So, and Yong-Gyoo Kim, "Laboratory characterisations and intercomparison sounding test of dual thermistor radiosondes for radiation correction," Atmospheric Measurement Techniques, Vol. 15, No. 8, 2531-2545, 2022.
doi:10.5194/amt-15-2531-2022        Google Scholar

18. Lee, Sang-Wook, Sunghun Kim, Young-Suk Lee, Byung Il Choi, Woong Kang, Youn Kyun Oh, Seongchong Park, Jae-Keun Yoo, Joohyun Lee, Sungjun Lee, Suyong Kwon, and Yong-Gyoo Kim, "Radiation correction and uncertainty evaluation of RS41 temperature sensors by using an upper-air simulator," Atmospheric Measurement Techniques, Vol. 15, No. 5, 1107-1121, 2022.
doi:10.5194/amt-15-1107-2022        Google Scholar

19. Sun, Xingming, Shuangshuang Yan, Baowei Wang, Li Xia, Qi Liu, and Hui Zhang, "Air temperature error correction based on solar radiation in an economical meteorological wireless sensor network," Sensors, Vol. 15, No. 8, 18114-18139, 2015.
doi:10.3390/s150818114        Google Scholar

20. Wang, Baowei, Xiaodu Gu, Li Ma, and Shuangshuang Yan, "Temperature error correction based on BP neural network in meteorological wireless sensor network," International Journal of Sensor Networks, Vol. 23, No. 4, 265-278, 2017.
doi:10.1504/ijsnet.2017.083532        Google Scholar

21. Von Rohden, Christoph, Michael Sommer, Tatjana Naebert, Vasyl Motuz, and Ruud J. Dirksen, "Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41," Atmospheric Measurement Techniques, Vol. 15, No. 2, 383-405, 2022.
doi:10.5194/amt-15-383-2022        Google Scholar

22. Jing, Xin, Xi Shao, Tung-Chang Liu, and Bin Zhang, "Comparison of gruan rs92 and rs41 radiosonde temperature biases," Atmosphere, Vol. 12, No. 7, 857, 2021.
doi:10.3390/atmos12070857        Google Scholar

23. Yang, Jie, Jiale Jiang, Renhui Ding, and Qingquan Liu, "Design of a high-accuracy air temperature measurement system using computational fluid dynamics and neural networks," International Journal of Thermal Sciences, Vol. 214, 109895, 2025.
doi:10.1016/j.ijthermalsci.2025.109895        Google Scholar

24. Luza, Lucas Matana, Annachiara Ruospo, Daniel Söderström, Carlo Cazzaniga, Maria Kastriotou, Ernesto Sanchez, Alberto Bosio, and Luigi Dilillo, "Emulating the effects of radiation-induced soft-errors for the reliability assessment of neural networks," IEEE Transactions on Emerging Topics in Computing, Vol. 10, No. 4, 1867-1882, 2022.
doi:10.1109/tetc.2021.3116999        Google Scholar

25. Vivarelli, Guglielmo, Ning Qin, and Shahrokh Shahpar, "A review of mesh adaptation technology applied to computational fluid dynamics," Fluids, Vol. 10, No. 5, 129, 2025.
doi:10.3390/fluids10050129        Google Scholar

26. Aguerre, Horacio J., Patricio H. Pedreira, Pedro J. Orbaiz, and Norberto M. Nigro, "Validation and enhancement of a supermesh strategy for the CFD simulation of four-stroke internal combustion engines," Fluids, Vol. 7, No. 3, 104, 2022.
doi:10.3390/fluids7030104        Google Scholar

27. Aycan, O., A. Topuz, and L. Kadem, "Evaluating uncertainties in CFD simulations of patient-specific aorta models using Grid Convergence Index method," Mechanics Research Communications, Vol. 133, 104188, 2023.
doi:10.1016/j.mechrescom.2023.104188        Google Scholar

28. Abdelrazik, A. S., Ahmed Osama, Abdelwahab N. Allam, Bashar Shboul, M. A. Sharafeldin, Mohamed Elwardany, and A. M. Masoud, "ANSYS-Fluent numerical modeling of the solar thermal and hybrid photovoltaic-based solar harvesting systems," Journal of Thermal Analysis and Calorimetry, Vol. 148, No. 21, 11373-11424, 2023.
doi:10.1007/s10973-023-12509-2        Google Scholar

29. Jin, Wei, Xin Hong, Jie Yang, Qingquan Liu, Zhenyu Li, Qin Ding, and Haque M. Amdadul, "Development of a high-accuracy temperature sensor for meteorological observations based on computational fluid dynamics and neural networks," International Communications in Heat and Mass Transfer, Vol. 164, 108801, 2025.
doi:10.1016/j.icheatmasstransfer.2025.108801        Google Scholar

30. Hu, Zheng, Jiaojiao Zhang, and Yun Ge, "Handling vanishing gradient problem using artificial derivative," IEEE Access, Vol. 9, 22371-22377, 2021.
doi:10.1109/access.2021.3054915        Google Scholar