Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-29
A Model-Free Adaptive Control for PMSM Using Multi-Innovation Improved EKF
By
Progress In Electromagnetics Research C, Vol. 164, 69-77, 2026
Abstract
Permanent magnet synchronous motor (PMSM) used in high-end applications has stringent control performance requirements. However, harsh environments, complex operating conditions, and nonlinear parameter variations can compromise model adaptability, which undermines system reliability and precision. This paper proposes a model-free adaptive control (MFAC) method that utilizes a Multi-Innovation Improved Extended Kalman Filter (MIIEKF) algorithm for prediction and update to enhance system reliability and accuracy. First, the proposed method transforms the PMSM model into a compact-form dynamic linearization (CFDL) data model, which mitigates the need for precise mathematical modeling. Next, an improved Extended Kalman Filter (IEKF) algorithm is used to predict and update the pseudo partial derivative (PPD) in real-time. This resolves its estimation dependency and compensates for data model inaccuracies. Then, the IEKF algorithm is optimized by using Multi-Innovation identification theory to ensure rapid state convergence. Finally, experimental validation confirms that the proposed method significantly improves the convergence rate, reduces chattering, and achieves efficient data-driven control compared to PI control and conventional model-free adaptive control.
Citation
Kaihui Zhao, Youzhuo Duan, Jie Xiong, Lingxuan Tu, and Yishan Huang, "A Model-Free Adaptive Control for PMSM Using Multi-Innovation Improved EKF," Progress In Electromagnetics Research C, Vol. 164, 69-77, 2026.
doi:10.2528/PIERC25110504
References

1. Orlowska-Kowalska, Teresa, Marcin Wolkiewicz, Przemyslaw Pietrzak, Maciej Skowron, Pawel Ewert, Grzegorz Tarchala, Mateusz Krzysztofiak, and Czeslaw T. Kowalski, "Fault diagnosis and fault-tolerant control of PMSM drives–state of the art and future challenges," IEEE Access, Vol. 10, 59979-60024, 2022.
doi:10.1109/access.2022.3180153        Google Scholar

2. Chen, Wenwen, Zhaoyong Mao, and Wenlong Tian, "Water cooling structure design and temperature field analysis of permanent magnet synchronous motor for underwater unmanned vehicle," Applied Thermal Engineering, Vol. 240, 122243, Mar. 2024.
doi:10.1016/j.applthermaleng.2023.122243        Google Scholar

3. Singh, Anant Kumar, Ramakrishnan Raja, Tomy Sebastian, and Awab Ali, "Limitations of the PI control with respect to parameter variation in PMSM motor drive systems," 2019 IEEE International Electric Machines & Drives Conference (IEMDC), 1688-1693, San Diego, CA, USA, May 12-15, 2019.
doi:10.1109/IEMDC.2019.8785406

4. Ke, Dongliang, Fengxiang Wang, Xinhong Yu, S. Alireza Davari, and Ralph Kennel, "Predictive error model-based enhanced observer for PMSM deadbeat control systems," IEEE Transactions on Industrial Electronics, Vol. 71, No. 3, 2242-2252, Mar. 2024.
doi:10.1109/tie.2023.3269476        Google Scholar

5. Yin, Zhenxiao, Xueyan Wang, Xiangdong Su, Yang Shen, Dianxun Xiao, and Hang Zhao, "A switched ultra-local model-free predictive controller for PMSMs," IEEE Transactions on Power Electronics, Vol. 39, No. 9, 10665-10669, Sep. 2024.
doi:10.1109/tpel.2024.3399599        Google Scholar

6. Davari, S. Alireza, Mahdi S. Mousavi, Behnam Nikmaram, Freddy Flores-Bahamonde, Fengxinag Wang, Patrick Wheeler, and Jose Rodriguez, "Sensorless model-free predictive control of permanent magnet synchronous motor," IEEE Transactions on Industrial Electronics, 1-12, 2025.
doi:10.1109/tie.2025.3589366        Google Scholar

7. Wang, Lanbing, Shuo Zhang, Chengning Zhang, Yu Huang, Yuelin Dong, and Shulin Wang, "An improved model-free adaptive current control for PMSM based on prior-optimization," IEEE Transactions on Industrial Electronics, Vol. 72, No. 6, 5591-5601, Jun. 2025.
doi:10.1109/tie.2024.3488276        Google Scholar

8. Chu, Wendi and Xinlong Shui, "Application of predictive control for synchronous motors in oil field automation," International Core Journal of Engineering, Vol. 11, No. 10, 56-65, 2025.
doi:10.6919/ICJE.202510_11(10).0008        Google Scholar

9. Hou, Zhongsheng, Ronghu Chi, and Huijun Gao, "An overview of dynamic-linearization-based data-driven control and applications," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 4076-4090, 2017.
doi:10.1109/tie.2016.2636126        Google Scholar

10. Cao, Yuanchao, Xing Ren, Qing Guo, Guicheng Wu, Qiang Long, and Mengfan Ran, "Position sensorless control of PMSM based on EKF current noise compensation and MRAS," 2024 IEEE International Conference on Mechatronics and Automation (ICMA), 870-875, Tianjin, China, 2024.
doi:10.1109/ICMA61710.2024.10632984

11. Dan, Luo, "EKF-based fault detection and isolation for PMSM inverter," Sustainable Energy Technologies and Assessments, Vol. 52, 101846, Aug. 2022.
doi:10.1016/j.seta.2021.101846        Google Scholar

12. Ding, Feng, "Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data," Journal of Computational and Applied Mathematics, Vol. 426, 115107, Jul. 2023.
doi:10.1016/j.cam.2023.115107        Google Scholar

13. Hou, Zhongsheng and Shuangshuang Xiong, "On model-free adaptive control and its stability analysis," IEEE Transactions on Automatic Control, Vol. 64, No. 11, 4555-4569, Nov. 2019.
doi:10.1109/tac.2019.2894586        Google Scholar

14. Xiao, Jie, Yonglian Xiong, Yucheng Zhu, Chao Zhang, Ting Yi, Xing Qian, Yongsheng Fan, and Quanhui Hou, "Multi-innovation adaptive Kalman filter algorithm for estimating the SOC of lithium-ion batteries based on singular value decomposition and Schmidt orthogonal transformation," Energy, Vol. 312, 133597, Dec. 2024.
doi:10.1016/j.energy.2024.133597        Google Scholar

15. Lim, Steve, "Sensorless-FOC for PMSM with single DC-link shunt," 1-32, Application Note, Texas Instruments, 2020.

16. Vas, P., Sensorless Vector and Direct Torque Control, Oxford University Press, 1998.
doi:10.1093/oso/9780198564652.001.0001

17. Hou, Zhongsheng and Shangtai Jin, Model Free Adaptive Control, CRC Press, Boca Raton, FL, USA, 2013.
doi:10.1201/b15752