Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-13
Electromagnetic Performances Comparison of Partitioned Stator Flux Modulation Machines with Different Auxiliary Rotor Structures
By
Progress In Electromagnetics Research C, Vol. 164, 232-242, 2026
Abstract
In this paper, the electromagnetic performances of partitioned stator flux modulation (PSFM) machines with different rotor structures are compared to highlight the advantages of the auxiliary rotor structures. Two novel auxiliary rotors are proposed to suppress electromagnetic vibration in PSFM machine. First, the PSFM machine topology and the analytical models for the outer air-gap permeance of the different rotors are introduced. Furthermore, a comparative analysis of the electromagnetic and vibrational performance between the different auxiliary rotor machines and the conventional rotor machine are conducted to validate the advantages of the proposed designs. Finally, machines with different auxiliary rotors are mounted onto the experimental platform for testing to validate the effectiveness of the theoretical analysis.
Citation
Yifei Hu, Meimei Xu, Zhijian Ling, Wenxiang Zhao, and Zhaowei Wang, "Electromagnetic Performances Comparison of Partitioned Stator Flux Modulation Machines with Different Auxiliary Rotor Structures," Progress In Electromagnetics Research C, Vol. 164, 232-242, 2026.
doi:10.2528/PIERC25111807
References

1. Chen, Hong, Zhe Zhu, Zongsheng Zhang, and Hao Wang, "Comparative analysis of consequent-pole PM Vernier machines with different rotor types," IEEE Transactions on Transportation Electrification, Vol. 10, No. 1, 450-461, Mar. 2024.
doi:10.1109/tte.2023.3288605        Google Scholar

2. Xu, Liang, Zeyu Chen, Wenxiang Zhao, and Tingting Jiang, "Analysis of a fault-tolerant dual-permanent-magnet vernier machine with hybrid stator," IEEE Transactions on Transportation Electrification, Vol. 10, No. 3, 6559-6570, Sep. 2024.
doi:10.1109/tte.2023.3345929        Google Scholar

3. Bi, Yanding, Weinong Fu, Shuangxia Niu, Xing Zhao, Jiahui Huang, and Zhenyang Qiao, "Torque enhancement of a dual-PM flux-switching machine with improved multiple high-order working harmonics," IEEE Transactions on Transportation Electrification, Vol. 10, No. 2, 2830-2843, Jun. 2024.
doi:10.1109/tte.2023.3294189        Google Scholar

4. Xu, Liang, Wenxiang Zhao, Rende Li, and Shuangxia Niu, "Analysis of rotor losses in permanent magnet vernier machines," IEEE Transactions on Industrial Electronics, Vol. 69, No. 2, 1224-1234, Feb. 2022.
doi:10.1109/tie.2021.3063974        Google Scholar

5. Xiang, Zixuan, Zirun Lu, Xiaoyong Zhu, Min Jiang, Deyang Fan, and Li Quan, "Research on magnetic coupling characteristic of a double rotor flux-switching PM machine from the perspective of air-gap harmonic groups," IEEE Transactions on Industrial Electronics, Vol. 69, No. 12, 12551-12563, Dec. 2022.
doi:10.1109/tie.2021.3139182        Google Scholar

6. Cao, Libing, Yuefei Zuo, Xuhui Zhu, Shuangchun Xie, and Christopher H. T. Lee, "Investigation of permanent-magnet vernier machine with fractional-slot nonoverlapping windings for direct-drive application," IEEE Transactions on Transportation Electrification, Vol. 10, No. 2, 3383-3395, Jun. 2024.
doi:10.1109/tte.2023.3302285        Google Scholar

7. Liu, Jinpeng, Xianglin Li, Bo Yan, Wei Hua, and Xiuhe Wang, "Electromagnetic performance analysis of a field-modulated permanent magnet motor using improved hybrid subdomain method," IEEE Transactions on Energy Conversion, Vol. 38, No. 3, 1753-1766, Sep. 2023.
doi:10.1109/tec.2023.3253262        Google Scholar

8. Kim, Ju Hyung, Yingjie Li, and Bulent Sarlioglu, "Novel six-slot four-pole axial flux-switching permanent magnet machine for electric vehicle," IEEE Transactions on Transportation Electrification, Vol. 3, No. 1, 108-117, Mar. 2017.
doi:10.1109/tte.2016.2620169        Google Scholar

9. Cheng, Ming, Wei Hua, Jianzhong Zhang, and Wenxiang Zhao, "Overview of stator-permanent magnet brushless machines," IEEE Transactions on Industrial Electronics, Vol. 58, No. 11, 5087-5101, Nov. 2011.
doi:10.1109/tie.2011.2123853        Google Scholar

10. McFarland, James D., Thomas M. Jahns, and Ayman M. EL-Refaie, "Analysis of the torque production mechanism for flux-switching permanent-magnet machines," IEEE Transactions on Industry Applications, Vol. 51, No. 4, 3041-3049, Jul.-Aug. 2015.
doi:10.1109/tia.2015.2411655        Google Scholar

11. Zhang, Hengliang, Wei Hua, Mingjin Hu, David Gerada, and Chris Gerada, "The influence of winding location in flux-switching permanent-magnet machines," IEEE Transactions on Magnetics, Vol. 55, No. 7, 1-5, Jul. 2019.
doi:10.1109/tmag.2018.2886686        Google Scholar

12. Shi, J. T., A. M. Wang, and Z. Q. Zhu, "Influence of PM- and armature winding-stator positions on electromagnetic performance of novel partitioned stator permanent magnet machines," IEEE Transactions on Magnetics, Vol. 53, No. 1, 1-12, Jan. 2017.
doi:10.1109/tmag.2016.2601886        Google Scholar

13. Zhu, Z. Q., Hao Hua, Di Wu, J. T. Shi, and Z. Z. Wu, "Comparative study of partitioned stator machines with different PM excitation stators," IEEE Transactions on Industry Applications, Vol. 52, No. 1, 199-208, Jan.-Feb. 2016.
doi:10.1109/tia.2015.2477055        Google Scholar

14. Zhang, Zhiheng, Wei Hua, Yubin Wang, Xianglin Li, Xinkai Zhu, and Ming Cheng, "Relationship between slot-pole combination and performance of partitioned-stator field-excitation brushless machines by air-gap field modulation principle," IEEE Transactions on Transportation Electrification, Vol. 10, No. 4, 10410-10419, Dec. 2024.
doi:10.1109/tte.2024.3379762        Google Scholar

15. Jang, Daekyu and Junghwan Chang, "Effects of flux modulation poles on the radial magnetic forces in surface-mounted permanent-magnet vernier machines," IEEE Transactions on Magnetics, Vol. 53, No. 6, 1-4, Jun. 2017.
doi:10.1109/tmag.2017.2663399        Google Scholar

16. Shen, Qiping, Jun Cheng, Dong Guo, and Tianhai Yang, "Analysis and suppression of electromagnetic vibration noise of fractional-slot concentrated-windings interior PMSMs," IEEE Transactions on Transportation Electrification, Vol. 10, No. 3, 5270-5281, Sep. 2024.
doi:10.1109/tte.2023.3330168        Google Scholar

17. Liu, Guohai, Rui Guan, and Liang Xu, "Unequal stator modulated teeth structure to reduce electromagnetic vibration in permanent magnet vernier machine," IEEE Transactions on Industrial Electronics, Vol. 70, No. 12, 12036-12047, Dec. 2023.
doi:10.1109/tie.2023.3239778        Google Scholar

18. Elamin, Mohammed, Yusuf Yasa, Yilmaz Sozer, John Kutz, Joshua Tylenda, and Ronnie L. Wright, "Effects of windows in stator and rotor poles of switched reluctance motors in reducing noise and vibration," 2017 IEEE International Electric Machines and Drives Conference (IEMDC), 1-6, Miami, FL, USA, 2017.
doi:10.1109/IEMDC.2017.8002375

19. Nakata, K., K. Hiramoto, M. Sanada, S. Morimoto, and Y. Takeda, "Noise reduction for switched reluctance motor with a hole," Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No.02TH8579), Vol. 3, 971-976, Osaka, Japan, 2002.
doi:10.1109/PCC.2002.998100

20. Gan, Chun, Jianhua Wu, Mengjie Shen, Shiyou Yang, Yihua Hu, and Wenping Cao, "Investigation of skewing effects on the vibration reduction of three-phase switched reluctance motors," IEEE Transactions on Magnetics, Vol. 51, No. 9, 1-9, Sep. 2015.
doi:10.1109/tmag.2015.2441035        Google Scholar

21. Zhu, Shengdao, Jinghua Ji, Wenxiang Zhao, Guohai Liu, and Christopher H. T. Lee, "Vibration reduction design of consequent pole PM machine by symmetrizing local and global magnetic field," IEEE Transactions on Industrial Electronics, Vol. 70, No. 1, 243-254, Jan. 2023.
doi:10.1109/tie.2022.3146537        Google Scholar

22. Zhao, Wenxiang, Shengdao Zhu, Jinghua Ji, Guohai Liu, and Yanxin Mao, "Analysis and reduction of electromagnetic vibration in fractional-slot concentrated-windings PM machines," IEEE Transactions on Industrial Electronics, Vol. 69, No. 4, 3357-3367, Apr. 2022.
doi:10.1109/tie.2021.3071701        Google Scholar

23. Zhu, Shengdao, Wenxiang Zhao, Yiming Shen, Xuhui Zhu, You Zhou, and Christopher H. T. Lee, "Investigation of vibration behaviors of dual permanent magnet vernier machine considering field and force modulation effects," IEEE Transactions on Transportation Electrification, Vol. 11, No. 1, 2759-2769, Feb. 2025.
doi:10.1109/tte.2024.3428868        Google Scholar

24. Guan, Rui, Zhengmeng Liu, Liang Xu, and Guohai Liu, "Electromagnetic vibration analysis of the permanent magnet vernier machine with dynamic eccentricity effect," IEEE Access, Vol. 13, 111793-111801, 2025.
doi:10.1109/access.2025.3582385        Google Scholar