Vol. 61

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2006-05-20

Design of an Active Integrated Antenna for a Pcmcia Card

By Filiberto Bilotti, Fabio Urbani, and Lucio Vegni
Progress In Electromagnetics Research, Vol. 61, 253-270, 2006
doi:10.2528/PIER06012002

Abstract

This paper presents the design and implementation of an Active Integrated Antenna (AIA) using a Voltage Controlled Oscillator (VCO) for applications in the Industrial Scientific Medical band (2.4 ÷ 2.4835 GHz). Surface Mounting Device (SMD) technology has been applied in the realization of the passive and active components, and low cost FR-4 dielectric slabs have been employed for the integration of the antenna and the active/transmissive circuits, residing, respectively, on the opposite faces of a Personal Computer Memory Card International Association (PCMCIA) card. The proposed layout makes use of a properly corrugated ground plane, i.e., a High Impedance Ground Plane (HIGP), to improve the antenna performances and to minimize the coupling between the radiating component and other possible radiating elements and/or electronic circuits residing nearby. The analysis and the design of the radiating element with the HIGP are based on a rigorous full wave Method of Moment (MoM) formulation developed in the Spectral Domain (SD), while the design of the active circuitry is developed through the commercial tool AWR Microwave Office. The final design of the component is obtained hybridizing the two methods and applying a Genetic Algorithm (GA) optimization tool in order to take advantage of the HIGP, while keeping the geometrical dimensions of the antenna suitable for mounting on a PCMCIA card, and maintaining the antenna performances acceptable. The measured results show the performances of the VCO, an antenna gain of 19.4 dBi and an increased front-to-back radiation ratio compared to the one of the same antenna mounted on a standard Perfect Electric Ground Plane (PEGP). This result, thus, demonstrates the minimization of the interferences between the designed antenna and other possible radiating and transmissive devices residing nearby.

Citation


Filiberto Bilotti, Fabio Urbani, and Lucio Vegni, "Design of an Active Integrated Antenna for a Pcmcia Card," Progress In Electromagnetics Research, Vol. 61, 253-270, 2006.
doi:10.2528/PIER06012002
http://www.jpier.org/PIER/pier.php?paper=0601202

References


    1. Lin, J. and T. Itoh, "Active integrated antennas," IEEE Trans. Microwave Theory Tech., Vol. MTT-42, No. 12, 2186-2194, 1994.

    2. Pobanz, C. W. and T. Itoh, "Active integrated antennas," IEEE Potentials, Vol. 16, No. 2, 6-10, 1997.
    doi:10.1109/45.580441

    3. Itoh, T., "Active integrated antennas for wireless applications," Proc. Microwave Conference APMC '97, Vol. 1, 2-5, 1997.

    4. Qian, Y. and T. Itoh, "Progress in active integrated antennas and their applications," IEEE Trans. Microwave Theory Tech., Vol. MTT-46, No. 11, 1891-1900, 1998.
    doi:10.1109/22.734506

    5. Chang, K., R. A. York, P. S. Hall, and T. Itoh, "Active integrated antennas," IEEE Trans. Microwave Theory Tech., Vol. MTT-50, No. 3, 937-944, 2002.
    doi:10.1109/22.989976

    6. Leong, K. M. K. H. and T. Itoh, "Developments in active integrated antennas," Proc. 2003 IEEE Antennas Propagat. Society Int. Symp., Vol. 1, 22-27, 2003.

    7. Kwon, S., B. M. Lee, Y. J. Yoon, W. Y. Song, and J. G. Yook, "A harmonic suppression antenna for an active integrated antenna," IEEE Microwave Wireless Compon. Lett., Vol. 13, No. 2, 54-56, 2003.
    doi:10.1109/LMWC.2003.808716

    8. Erturk, B., R. G. Ro jas, and P. Roblin, "Hybrid analysis/design method for active integrated antennas," IEE Proc. Microwaves Antennas Propagat., Vol. 146, No. 2, 131-137, 1999.
    doi:10.1049/ip-map:19990208

    9. Anzellotti, E., F. Bilotti, and L. Vegni, "Broad-band tuning of an AIA amplifier using 1-D PBG transmission lines," J. Electromag. Waves Applicat., Vol. 17, No. 4, 571-584, 2003.
    doi:10.1163/15693930360681893

    10. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surface with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. MTT-47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    11. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact Photonic-BandGap (UC-PBG) structure and its applications for microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. MTT-47, No. 8, 1509-1514, 1999.
    doi:10.1109/22.780402

    12. Bilotti, F., A. Al `u, and L. Vegni, "Analysis of dipole and patch radiators in presence of artificial magnetic and impedance reflectors and ground planes: Preliminary results," Proc. PIERS'04, Vol. '' Proc. S'04, No. 3, 28-31, 2004.

    13. Bilotti, F., L. Vegni, and F. Urbani, "Synthesis of patch sntennas loaded by inhomogeneous dubstrates via a combined spectral domain — Genetic Algorithm Approach," Microwave and Optical Technology Letters, Vol. 39, No. 6, 464-468, 2003.
    doi:10.1002/mop.11248

    14. Vegni, L., R. Cicchetti, and P. Capece, "Spectral dyadic Green's function formulation for planar integrated structures," IEEE Trans. Antennas Propagat., Vol. AP-36, No. 8, 1057-1065, 1988.
    doi:10.1109/8.7217

    15. Bilotti, F. and C. Vegni, "Rigorous and efficient full-wave analysis of trapezoidal patch antennas," IEEE Trans. Antennas Propagat., Vol. AP-49, No. 12, 1773-1776, 2001.
    doi:10.1109/8.982459

    16. Urbani, F., F. Bilotti, and L. Vegni, "Synthesis of filtering structures for microstrip active antennas using Orlov's formula," ETRI Journal, Vol. 27, No. 2, 166-171, 2005.

    17. Vendelin, G. D., A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, Wiley, New York, 1990.

    18. Kurokawa, K., "Some basic characteristics of broadband negative resistance oscillator circuits," Bel l Syst. Tech. J., No. 8, 1937-1955, 1969.

    19. Pozar, D. M., "Microstrip antennas," Proc. IEEE, Vol. 80, No. 1, 79-91, 1992.
    doi:10.1109/5.119568

    20. Vegni, L., R. Cicchetti, and P. Capece, "Spectral dyadic Green's function formulation for planar integrated structures," IEEE Trans. Antennas Propagat., Vol. 36, No. 8, 1057-1065, 1988.
    doi:10.1109/8.7217

    21. Waterhouse, R. B., "The use of shorting posts to improve the scanning range of probe-fed microstrip patch phased arrays," IEEE Trans. Antennas Propagat., Vol. 44, No. 3, 302-309, 1996.
    doi:10.1109/8.486297

    22. Park, S., C. A. Balanis, and C. R. Birtcher, "Analytical evaluation of the ssymptotic Impedance matrix of a grounded dielectric slab with roof-top functions," IEEE Trans. Antennas Propagat., Vol. AP-26, No. 2, 251-259, 1998.
    doi:10.1109/8.660970

    23. Bilotti, F., A. Al `u, F. Urbani, and L. Vegni, "Asymptotic evaluation of the MoM excitation vector for probe-fed microstrip antennas," J. Electromag. Waves Applicat., Vol. 19, No. 12, 1639-1654, 2005.
    doi:10.1163/156939305775537410

    24. Hsiao, F. R. and K. L. Wong, "A shorted patch antenna with an l-shaped ground plane for internal mobile handset antennas," Microw. Opt. Technol. Lett., Vol. 33, No. 4, 314-316, 2002.
    doi:10.1002/mop.10305

    25. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. Antennas Propagat., Vol. AP-52, No. 9, 2403-2414, 2004.
    doi:10.1109/TAP.2004.834135

    26. Tretyakov, S. A. and C. R. Simovski, "Wire antennas near artificial impedance surfaces," Microw. Opt. Technol. Lett., Vol. 27, No. 1, 46-50, 2000.
    doi:10.1002/1098-2760(20001005)27:1<46::AID-MOP13>3.0.CO;2-9