1. World Health Organization Fact Sheet No. 297: Cancer, http://www.who.int/mediacentre/factsheets/fs297/en/index.html, 2006.
2. Huynh, P. T., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radiographics, Vol. 18, 1137-1154, 1998.
doi:10.1056/NEJMcp021804
3. Fletcher, S. W. and J. G. Elmore, "Mammographic screening for breast cancer," New Engl. J. Med., Vol. 37, 1672-1680, 2003.
doi:10.1109/MP.2003.1180933
4. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003.
5. Moore, S. K., "Better breast cancer detection," IEEE Spectrum, Vol. 38, No. 5, 50-54, 2001.
6. Fear, E. C., "Microwave imaging of the breast," TCRT, Vol. 4, No. 1, 69-85, 2005.
doi:10.2528/PIER05081802
7. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.1109/6668.990683
8. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near field imaging," IEEE Microw. Mag., Vol. 3, No. 1, 48-56, 2002.
9. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 11, Part 1, 1854-1863, 2000.
doi:10.1163/156939306775777350
10. Guo, B., Y. Wang, and J. Li, "Active imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939303322235860
11. Davis, S. K., E. J. Bond, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 357-381, 2003.
doi:10.1109/TBME.2008.919716
12. Lim, H. B., T. T. N. Nguyen, E. Li, and D. T. Nguyen, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TAP.2007.905868
13. Chen, Y., E. Gunawan, K. S. Low, S. Wang, C. B. Soh, and L. L. Thi, "Time of arrival data fusion method for two-dimensional ultrawideband breast cancer detection," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2852-2865, 2007.
doi:10.1109/TAP.2006.888432
14. Chen, Y., E. Gunawan, K. S. Low, S. Wang, Y. Kim, and C. B. Soh, "Pulse design for time reversal method as applied to ultrawideband microwave breast cancer detection: A two-dimensional analysis," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 194-204, 2007.
doi:10.1109/TBME.2006.878058
15. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, 2006.
doi:10.1109/TBME.2002.800759
16. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-821, 2002.
doi:10.1109/TMTT.2006.871994
17. Kosmas, P. and C. M. Rappaport, "FDTD-based time reversal approach for microwave breast cancer detection — Localization in three dimensions," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1921-1927, 2006.
doi:10.1109/8.774131
18. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna array element," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 783-791, 1999.
doi:10.1109/TBME.2007.903702
19. Arunachalam, K., L. Udpa, and S. S. Udpa, "A computational investigation of microwave breast imaging using deformable reflector," IEEE Trans. Biomed. Eng., Vol. 55, No. 2, Part 1, 554-562, 2008.
doi:10.1109/10.972840
20. Semenov, S. Y., R. H. Svenson, A. E. Boulyshev, A. E. Souvorov, A. G. Nazarov, Y. Sizov, V. Posukh, A. Pavlovsky, P. Repin, A. Starostin, B. Voinov, M. Taran, G. Tatsis, and V. Baranov, "Three-dimensional microwave tomography: Initial experimental imaging of animals," IEEE Trans. Biomed. Eng., Vol. 49, No. 1, 55-63, 2002.
doi:10.1109/10.532121
21. Semenov, S. Y., R. H. Svenson, A. E. Boulyshev, A. E. Souvorov, V. Y. Borisov, Y. Sizov, A. N. Starostin, K. R. Dezern, G. P. Tatsis, and V. Y. Bara, "Microwave tomography: Twodimensional system for biological imaging," IEEE Trans. Biomed. Eng., Vol. 43, No. 9, 869-877, 1996.
doi:10.1109/10.942596
22. Boulyshev, A. E., S. Y Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazarov, Y. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053-1056, 2001.
doi:10.1109/TMTT.2005.850459
23. Semenov, S. Y., A. E. Boulyshev, A. Abubakar, V. G. Posukh, Y. Sizov, A. E. Souvorov, P. M. van den Berg, and T. C. Williams, "Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 2284-2294, 2005.
24. Yan, L. P., K. M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.
doi:10.1163/156939307783239429
25. Lonappan, A., G. Bindu, V. Thomas, and J. Jacob, "Diagnosis of diabetes mellitus using microwaves," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1393-1401, 2007.
26. Lonappan, A., V. Thomas, and G. Bindu, "Nondestructive measurement of human blood at microwave frequencies," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1131-1139, 2007.
doi:10.1163/156939306776149897
27. Semenov, S. Y., V. G. Posukh, A. E. Boulyshev, and T. C. Williams, "Microwave tomographic imaging of the heart in intact swine," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 873-890, 2006.
doi:10.1109/TBME.2007.900564
28. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2003.820392
29. El-Shenawee, M., "Resonant spectra of malignant breast cancer tumors using the three-dimensional electromagnetic fast multipole model," IEEE Trans. Biomed. Eng., Vol. 51, No. 1, 35-44, 2004.
doi:10.1109/TMI.2006.881377
30. El-Shenawee, M. and E. L. Miller, "Spherical harmonics microwave algorithm for shape and location reconstruction of breast cancer tumor," IEEE Trans. Med. Imaging, Vol. 25, No. 10, 1258-1271, 2006.
31. Huo, Y., R. Bansal, and Q. Zhu, "Breast tumor characterization via complex natural resonances," IEEE Microw. Symp. Dig., 387-390, 2003.
32. Gustav, M., Ann. Phys., Vol. 330, 377-445, 1908.
33. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Vol. 1, Plenum Press, New York, 1970.
34. Goodrich, R. F., B. A. Harrison, R. E. Kleinman, and T. B. A. Senior, Studies in radar cross sections XLVII diffraction and scattering by regular bodies — I: The sphere, Radiation Lab, University of Michigan, December, 1961.
35. Lee, J. W., H. J. Eom, and J. H. Lee, "TM-wave radiation from flanged parallel-plate into dielectric slab," IEE Proc. --- Microw. Antennas Propag., Vol. 143, No. 3, 1996.
36. Bracewell, R., The Fourier Transform and Its Applications, 3rd Ed., McGraw-Hill, New York, 1999.
37. Kreyzsig, E., Advanced Engineering Mathematics, 8th Ed., John Wiley & Sons, Inc., 1999.
doi:10.1163/156939306776149815
38. Zhao, J. X., "Numerical and analytical formulizations of the extend Mie theory for solving the sphere scattering problem," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 967-983, 2006.
39. McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, Artect House, Boston, 1990.
doi:10.1163/1569393042955405
40. Jiang, L. and S. Y. Tan, "A simple analytical path loss model for urban cellular communication systems," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1017-1032, 2004.
doi:10.2528/PIER05072801
41. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Dielectric studies of corn syrup for applications in microwave breast imaging," Progress In Electromagnetics Research, Vol. 59, 175-186, 2006.
doi:10.2528/PIERB07112703
42. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.1088/0031-9155/52/10/001
43. Lazenik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, No. 10, 2637-2656, 2007.
doi:10.1088/0031-9155/52/20/002
44. Lazenik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 10, 6093-6115, 2007.
doi:10.1109/LMWC.2007.910465
45. Lazenik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microw. Wireless Comp. Lett., Vol. 17, No. 12, 822-824, 2007.
doi:10.2528/PIERL07120610
46. Li, Y. L., "Scattering field for the ellipsoidal targets irradiated by an electromagnetic wave with arbitrary polarizing and propagating direction," Progress In Electromagnetics Research Letters, Vol. 1, 221-235, 2008.
47. Frezza, F., "A CWA-based detection procedure of a perfectly-conducting cylinder buried in a dielectric half-space ," Progress In Electromagnetics Research B, Vol. 7, 265-280, 2008.
48. Zainud-Deen, S. H., M. E. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.
doi:10.1163/156939306775701704
49. Van den Bosch, I., S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, "Accurate and efficient modeling of monostatic GPR signal of dielectric targets buried in stratified media," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 283-290, 2006.