Vol. 96
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-09-15
A Non-Spurious Vector Spectral Element Method for Maxwell's Equations
By
Progress In Electromagnetics Research, Vol. 96, 205-215, 2009
Abstract
In this paper, a non-spurious vector spectral element method is proposed to solve Maxwell's equations using E and H as variables. The mixed-order curl-conforming basis functions are used for both variables to facilitate applying boundary and interface conditions; and the interpolation degree of basis functions for E is set different from that for H to suppress the spurious modes. The proposed method can be utilized in both time domain and frequency domain, and it is very suitable for the future implementation of discontinuous Galerkin spectral element method. Numerical results demonstrate the property of spurious-free and the spectral accuracy of this method. The method has also been implemented for the more general finite element method in time and frequency domains.
Citation
Jiefu Chen, and Qing Huo Liu, "A Non-Spurious Vector Spectral Element Method for Maxwell's Equations," Progress In Electromagnetics Research, Vol. 96, 205-215, 2009.
doi:10.2528/PIER09082705
References

1. Rasetarinera, P. and M. Y. Hussaini, "An efficient implicit discontinuous spectral Galerkin method," J. Comput. Phys., Vol. 172, No. 2, 718-738, Sep. 2001.
doi:10.1006/jcph.2001.6853

2. Kopriva, D. A., S. L. Woodruff, and M. Y. Hussaini, "Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method," Int. J. Numer. Meth. Eng., Vol. 53, No. 1, 105-122, Oct. 2001.
doi:10.1002/nme.394

3. Giraldo, F. X., J. S. Hesthaven, and T. Warburton, "Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations," J. Comput. Phy., Vol. 181, No. 2, 499-525, Sep. 2002.
doi:10.1006/jcph.2002.7139

4. Hesthaven, J. S. and T. C.Warburton, "Nodal high-order methods on unstructured grids --- 1. Time-domain solution of Maxwell's equations," J. Comput. Phys., Vol. 181, 186-221, 2002.
doi:10.1006/jcph.2002.7118

5. Xiao, T. and Q. H. Liu, "Three-dimensional unstructured-grid discontinuous Galerkin method for Maxwell's equations with well-posed perfectly matched layer," Microwave Opt. Technol. Lett., Vol. 46, No. 5, 459-463, 2005.
doi:10.1002/mop.21016

6. Liu, Q. H. and G. Zhao, "Advances in PSTD techniques," Computational Electrodynamics: The Finite-difference Time-domain Method, A. Ta°ove and S. Hagness (eds.), Chapter 17, Artech House, Inc., 2005.

7. Shi, Y. and C.-H. Liang, "Simulations of the left-handed medium using discontinuous Galerkin method based on the hybrid domain," Progress In Electromagnetics Research, PIER 63, 171-191, 2006.

8. Kirsch, A. and P. Monk, "A finite element/spectral method for approximating the time-harmonic Maxwell system in R3," SIAM Journal on Applied Mathematics, Vol. 55, No. 5, 1324-1344, Oct. 1995.
doi:10.1137/S0036139993259891

9. Pingenot, J., R. N. Rieben, D. A. White, and D. G. Dudley, "Full wave analysis of RF signal attenuation in a lossy rough surface cave using a high order time domain vector nite element method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1695-1705, 2006.
doi:10.1163/156939306779292408

10. Cohen, G., Higher-order Numerical Methods for Transient Wave Equations, Springer, Berlin, 2002.

11. Lee, J. H., T. Xiao, and Q. H. Liu, "A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 437-444, Jan. 2006.
doi:10.1109/TMTT.2006.886157

12. Lee, J. H. and Q. H. Liu, "A 3-D spectral-element time-domain method for electromagnetic simulation," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 5, 983-991, May 2007.
doi:10.1109/TMTT.2007.895398

13. Mohammadian, A. H., V. Shankar, and W. F. Hall, "Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure," Computer Physics Communications, Vol. 68, No. 1-3, 175-196, Nov. 1991.
doi:10.1016/0010-4655(91)90199-U

14. Nedelec, J. C., "Mixed finite elements in R3," Numerische Mathematik, Vol. 35, No. 3, 315-341, 1980.
doi:10.1007/BF01396415

15. Cohen, G. and M. Durufle, "Non spurious spectral-like element methods for Maxwell's equations," J. Comput. Math., Vol. 25, No. 3, 282-300, 2007.

16. Wang, X. and K. Bathe, "Displacement/pressure based mixed nite element formulations for acoustic UID-structure interaction problems," Intl. J. Numer. Method. Eng., Vol. 40, No. 11, 2001-2017, 1997.
doi:10.1002/(SICI)1097-0207(19970615)40:11<2001::AID-NME152>3.0.CO;2-W

17. Liu, Q. H., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microwave Opt. Technol. Lett., Vol. 15, No. 3, 158-165, Jun. 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3

18. Wavenology EM User's Manual, Wave Computation Technologies, Inc., 2009.