1. Littman, M. G. and H. J. Metcalf, "Spectrally narrow pulsed dye laser without beam expander," Appl. Opt., Vol. 17, 2224-2227 , 1978.
doi:10.1364/AO.17.002224 Google Scholar
2. Tajima, T. and J. M. Dawson, "Laser electron accelerator," Phys. Rev. Lett., Vol. 43, 267-270, 1979.
doi:10.1103/PhysRevLett.43.267 Google Scholar
3. Witteman, W. J., "The CO2 laser," Springer Series in Optical Sciences, Vol. 53, Springer-Verlag, Berlin and New York, 1987. Google Scholar
4. Agrawal, G. P. and N. K. Dutta, Long Wavelength Semiconductor Lasers, Van Nostrand Reinhold Co. Inc., 1986.
5. Numai, T., Fundamentals of Semiconductor Lasers, Springer, 2004.
6. Koechner, W., Solid-state Laser Engineering, Springer Science & Business Media, Inc., 2006.
7. Arakawa, Y. and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett., Vol. 40, 939-941, 1982.
doi:10.1063/1.92959 Google Scholar
8. Denk, W., J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fuorescence microscopy," Science, Vol. 248, 73-76, 1990.
doi:10.1126/science.2321027 Google Scholar
9. Meng, X. G., J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, "Near infrared broadband emission of bismuth-doped aluminophosphate glass," Opt. Express, Vol. 13, 1628-1634, 2005.
doi:10.1364/OPEX.13.001628 Google Scholar
10. Ball, G. A. and W. W. Morey, "Compression-tuned single-frequency Bragg grating fiber laser," Opt. Lett., Vol. 19, 1979-1981, 1994.
doi:10.1364/OL.19.001979 Google Scholar
11. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, 818-923, 2003.
doi:10.1364/OE.11.000818 Google Scholar
12. Jeong, Y., J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express, Vol. 12, 6088-6092, 2004.
doi:10.1364/OPEX.12.006088 Google Scholar
13. Huber, R., M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating region and applications for optical coherence tomography," Opt. Express, Vol. 14, 3225-3237, 2006.
doi:10.1364/OE.14.003225 Google Scholar
14. Wang, M. J., Z. S. Wu, Y. L. Li, and G. Zhang, "High resolution range profile identifying simulation of laser radar based on pulse beam scattering characteristics of targets," Progress In Electromagnetics Research, Vol. 96, 193-204, 2009.
doi:10.2528/PIER09041901 Google Scholar
15. Shwetanshumala, S. Jana and S. Konar, "Propagation of a mixture of modes of a laser beam in a medium with saturable nonlinearity," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 65-77, 2006.
doi:10.1163/156939306775777422 Google Scholar
16. Fu, X., C. Cui, and S. C. Chan, "Optically injected semiconductor laser for photonic microwave frequency mixing in radio-over-fiber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 849-860, 2010.
doi:10.1163/156939310791285236 Google Scholar
17. Wei, H. Y. and Z. S. Wu, "Study on the effect of laser beam propagation on the slant path through atmospheric turbulence," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5/6, 787-802, 2008.
doi:10.1163/156939308784159525 Google Scholar
18. Li, J., J. Wang, and F. Jing, "Improvement of coiling mode to suppress higher-order-modes by considering mode coupling for large-mode-area fiber laser," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8/9, 1113-1124, 2010.
doi:10.1163/156939310791586070 Google Scholar
19. Maiman, T. H., "Stimulated optical radiation in ruby masers," Nature, Vol. 187, 439-440, 1960. Google Scholar
20. Han, Y., T. V. A. Tran, S. Kim, and S. B. Lee, "Multiwave-length Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature," Opt. Lett., Vol. 30, 1282-1284, 2005.
doi:10.1364/OL.30.001282 Google Scholar
21. Ou, H., H. Fu, D. Chen, and S. He, "A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser," Opt. Commun., Vol. 178, No. 1, 48-51, 2007.
doi:10.1016/j.optcom.2007.05.041 Google Scholar
22. Shen, G. F., X. M. Zhang, H. Chi, and X. F. Jin, "Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
doi:10.2528/PIER07112202 Google Scholar
23. Liu, S. C., Z. W. Yin, L. Zhang, X. F. Chen, L. Gao, and J. C. Cheng, "Dual-wavelength FBG laser sensor based on photonic generation of radio frequency demodulation technique," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2177-2185, 2009.
doi:10.1163/156939309790109252 Google Scholar
24. Moon, D. S., U.-C. Paek, and Y. Chang, "Multi-wavelength lasing oscillations in an Erbium-doped fiber laser using few-mode fiber Bragg grating," Opt. Express, Vol. 12, 6147-6152, 2004.
doi:10.1364/OPEX.12.006147 Google Scholar
25. Liu, X., X. Yang, F. Lu, J. Ng, and X. Zhou, "Stable and uniform dual-wavelength Erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber," Opt. Express, Vol. 13, 142-147, 2006. Google Scholar
26. Han, Y.-G., T. V. A. Tran, and A. B. Lee, "Wavelength-spacing tunable multi-wavelength Erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber," Opt. Lett., Vol. 31, 697-699, 2006.
doi:10.1364/OL.31.000697 Google Scholar
27. Chen, D., "Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter," Laser Phys. Lett., Vol. 4, 437-439, 2007.
doi:10.1002/lapl.200710003 Google Scholar
28. Qin, S., D. Chen, Y. Tang, and S. He, "Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains," Opt. Express, Vol. 14, 10522-10527, 2006.
doi:10.1364/OE.14.010522 Google Scholar
29. Yamishita, S. and T. Baba, "Spacing-tunable multiwavelength fiber laser," Electron. Lett., Vol. 37, 1015-1517, 2001.
doi:10.1049/el:20010690 Google Scholar
30. De Matos, C. J. S., D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, "Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm," Electron. Lett., Vol. 37, 825-826, 2001.
doi:10.1049/el:20010574 Google Scholar
31. Han, Y.-G., C.-S. Kim, J. U. Kand, U.-C. Paek, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded logn-period fiber gratings," IEEE Photon. Technol. Lett., Vol. 15, 383-385, 2003. Google Scholar
32. Dong, X. Y., P. Shum, N. Q. Ngo, and C. C. Chan, "Multiwavelength Raman fiber laser with a continuously-tunable spacing," Opt. Express, Vol. 14, 3288-3293, 2006.
doi:10.1364/OE.14.003288 Google Scholar
33. Chen, D., S. Qin, L. Shen, H. Chi, and S. He, "An all-fiber multi-wavelength raman laser based on a PCF sagnac loop filter," Microw. and Opt. Techn. Lett., Vol. 48, 2416-2418, 2006.
doi:10.1002/mop.21968 Google Scholar
34. Cowle, G. J. and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/erbium fiber lasers," IEEE Photon. Technol. Lett., Vol. 8, 1465-1467, 1996.
doi:10.1109/68.541551 Google Scholar
35. Bumki, M., P. Kim, and N. Park, "Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett., Vol. 13, 1352-1354, 2001.
doi:10.1109/68.969905 Google Scholar
36. Ahmad, H., M. Z. Zulkifli, S. F. Norizan, A. A. Latif, and S. W. Harun, "Controllable wavelength channels for multiwavelength Brillouin Bismuth/Erbium based fiber laser," Progress In Electromagnetics Research Letters, Vol. 9, 9-18, 2009.
doi:10.2528/PIERL09031905 Google Scholar
37. Qureshi, K. K., H. Y. Tam, W. H. Chung, and P. K. A. Wai, "Multiwavelength laser source using linear optical amplifier," IEEE Photon. Technol. Lett., Vol. 17, 1611-1613, 2005.
doi:10.1109/LPT.2005.851912 Google Scholar
38. Lee, Y. W., J. Jung, and B. Lee, "Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter," IEEE Photon. Technol. Lett., Vol. 16, 54-56, 2004.
doi:10.1109/LPT.2003.819414 Google Scholar
39. Liu, D., N. Q. Ngo, H. Liu, and D. Liu, "Stable multiwavelength fiber ring laser with equalized power spectrum based on a semiconductor optical amplifier," Opt. Commun., Vol. 282, 1598-1601, 2009.
doi:10.1016/j.optcom.2008.12.045 Google Scholar
40. Zhang, Z., W. Jian, K. Xu, X. Hong, and J. Lin, "Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation," Opt. Express, Vol. 17, 17200-17205, 2009.
doi:10.1364/OE.17.017200 Google Scholar
41. Pan, S. L., C. Y. Lou, and Y. Z. Gao, "Multiwavelength Erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter," Opt. Express, Vol. 14, 1113-1118, 2006.
doi:10.1364/OE.14.001113 Google Scholar
42. Marhid, M. E., K. K.-Y. Wong, G. Kalogerakis, and L. G. Kazovsky, "Toward practical fiber optical parametric amplifiers and oscillators," Optics & Photonics News, 21-25, 2004. Google Scholar
43. Ho, M., K. Uesaka, Y. Akasaka, and L. G. Kazovsky, "200-nm-bandwidth fiber optical amplifier combing parametric and Raman gain," J. Lightwave Technol., Vol. 19, 977-981, 2001. Google Scholar
44. Wong, K. K.-Y., K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, "Continuous-wave fiber optical parametric amplifier with 60-dB gain using a novel two segment design," IEEE Photon. Technol. Lett., Vol. 15, 1707-1709, 2003.
doi:10.1109/LPT.2003.819706 Google Scholar
45. Gao, M., C. Jiang, W. Hu, and J. Wang, "Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm," Opt. Express, Vol. 12, 5603-5613, 2004.
doi:10.1364/OPEX.12.005603 Google Scholar
46. Dahan, D. and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: A route to all optical buffering," Opt. Express, Vol. 13, 6234-6249, 2005.
doi:10.1364/OPEX.13.006234 Google Scholar
47. Torounidis, T., P. A. Andrekson, and B. Olsson, "Fiber-optical parametric amplifier with 70-dB gain," IEEE Photon. Technol. Lett., Vol. 18, 1194-1196, 2006.
doi:10.1109/LPT.2006.874714 Google Scholar
48. Wong, K. K. Y., G. Lu, and L. Chen, "Polarization-interleaved WDM signals in a fiber optical parametric amplifier with orthogonal pumps," Opt. Express, Vol. 15, 56-61, 2007.
doi:10.1364/OE.15.000056 Google Scholar
49. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.
doi:10.2528/PIER07051102 Google Scholar
50. Andalib, A., A. Rostami, and N. Grangpayeh, "Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical ¯bers (traditional and optimum dispersion compensated fibers)," Progress In Electromagnetics Research, Vol. 79, 119-136, 2008.
doi:10.2528/PIER07092502 Google Scholar
51. Lasri, J., P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm region," IEEE Photon. Technol. Lett., Vol. 15, 1058-1060, 2003.
doi:10.1109/LPT.2003.815333 Google Scholar
52. De Matos, C. J. S., J. R. Taylor, and K. P. Hansen, "Continouswave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett., Vol. 29, 983-985, 2004.
doi:10.1364/OL.29.000983 Google Scholar
53. Zhou, Y., K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, "Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber," Opt. Lett., Vol. 34, 989-992, 2009.
doi:10.1364/OL.34.000989 Google Scholar
54. Sharping, J. E., J. R. Sanborn, M. A. Foster, D. Broaddus, and A. L. Gaeta, "Generation of sub-100-fs pulses from a microstructure-fiber-based optical parametric oscillator," Opt. Express, Vol. 16, 18050-18056, 2008.
doi:10.1364/OE.16.018050 Google Scholar
55. Sharping, J. E., C. Pailo, C. Gu, L. Kiani, and J. R. Sanborn, "Microstructure fiber optical parametric oscillator with femtosecond output in the 1200 to 1350 nm wavelength range," Opt. Express, Vol. 18, 3911-3916, 2010.
doi:10.1364/OE.18.003911 Google Scholar
56. Zhuang, W. Z., W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen, "Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator," Opt. Express, Vol. 18, 8969-8975, 2010.
doi:10.1364/OE.18.008969 Google Scholar
57. Wong, G. K. L., S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, "High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator," Opt. Express, Vol. 15, 2947-2952, 2007.
doi:10.1364/OE.15.002947 Google Scholar
58. Xu, Y. Q., S. G. Murdoch, R. Leonhardt, and J. D. Harvey, "Widely tunable photonic crystal fiber Fabry-Perot optical parametric oscillator," Opt. Lett., Vol. 33, 1351-1353, 2008.
doi:10.1364/OL.33.001351 Google Scholar
59. Xu, Y. Q., S. G. Murdoch, R. Leonhardt, and J. D. Harvey, "Raman-assisted continuous-wave tunable all-fiber optical parametric oscillator," J. Opt. Soc. Am. B, Vol. 26, 1351-1356, 2009.
doi:10.1364/JOSAB.26.001351 Google Scholar
60. Yang, S., X. Xu, Y. Zhou, K. K. Y. Cheung, and K. K. Y. Wong, "Continuous-wave single-longitudinal-mode fiber-optical parametric oscillator with reduced pump threshold," IEEE Photon. Technol. Lett., Vol. 21, 1870-1872, 2009.
doi:10.1109/LPT.2009.2035056 Google Scholar
61. Luo, Z., W. D. Zhong, Z. Cai, C. Ye, H. Xu, X. Dong, and L. Xia, "Multiwavelength fiber optical parametric oscillator," IEEE Photon. Technol. Lett., Vol. 21, 1609-1611, 2009.
doi:10.1109/LPT.2009.2030778 Google Scholar
62. Kim, D. H. and J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Express, Vol. 12, 4490-4495, 2004.
doi:10.1364/OPEX.12.004490 Google Scholar