Vol. 106
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-07-22
Solutions of Large-Scale Electromagnetics Problems Using an Iterative Inner-Outer Scheme with Ordinary and Approximate Multilevel Fast Multipole Algorithms
By
Progress In Electromagnetics Research, Vol. 106, 203-223, 2010
Abstract
We present an iterative inner-outer scheme for the efficient solution of large-scale electromagnetics problems involving perfectly-conducting objects formulated with surface integral equations. Problems are solved by employing the multilevel fast multipole algorithm (MLFMA) on parallel computer systems. In order to construct a robust preconditioner, we develop an approximate MLFMA (AMLFMA) by systematically increasing the efficiency of the ordinary MLFMA. Using a flexible outer solver, iterative MLFMA solutions are accelerated via an inner iterative solver, employing AMLFMA and serving as a preconditioner to the outer solver. The resulting implementation is tested on various electromagnetics problems involving both open and closed conductors. We show that the processing time decreases significantly using the proposed method, compared to the solutions obtained with conventional preconditioners in the literature.
Citation
Ozgur Ergul, Tahir Malas, and Levent Gurel, "Solutions of Large-Scale Electromagnetics Problems Using an Iterative Inner-Outer Scheme with Ordinary and Approximate Multilevel Fast Multipole Algorithms," Progress In Electromagnetics Research, Vol. 106, 203-223, 2010.
doi:10.2528/PIER10061711
References

1. Song, J., C.-C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, Oct. 1997.

2. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propag. Mag., Vol. 35, No. 3, 7-12, 1993.

3. Ergul, O. and L. Gurel, "A hierarchical partitioning strategy for efficient parallelization of the multilevel fast multipole algorithm," IEEE Trans. Antennas Propagat., Vol. 57, No. 6, 1740-1750, Jun. 2009.

4. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.

5. Bouras, A. and V. Fraysse, "Inexact matrix-vector products in Krylov methods for solving linear systems: A relaxation strategy," SIAM J. Matrix Anal. Appl., Vol. 26, No. 3, 660-678, 2005.

6. Simoncini, V. and D. B. Szyld, "Flexible inner-outer Krylov subspace methods," SIAM J. Numer. Anal., Vol. 40, No. 6, 2219-2239, 2003.

7. Ding, D. Z., R. S. Chen, and Z. H. Fan, "SSOR preconditioned inner-outer flexible GMRES method for MLFMA analysis of scattering of open objects," Progress In Electromagnetics Research, Vol. 89, 339-357, 2009.

8. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

9. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, May 1982.

10. Koc, S., J. M. Song, and W. C. Chew, "Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem," SIAM J. Numer. Anal., Vol. 36, No. 3, 906-921, 1999.

11. Hastriter, M. L., S. Ohnuki, and W. C. Chew, "Error control of the translation operator in 3D MLFMA," Microwave Opt. Technol., Vol. 37, No. 3, 184-188, Mar. 2003.

12. Ergul, O. and L. Gurel, "Optimal interpolation of translation operator in multilevel fast multipole algorithm," IEEE Trans. Antennas Propagat., Vol. 54, No. 12, 3822-3826, Dec. 2006.

13. Brandt, A., "Multilevel computations of integral transforms and particle interactions with oscillatory kernels," Comp. Phys. Comm., Vol. 65, 24-38, Apr. 1991.

14. Carpentieri, B., I. S. Duff, L. Giraud, and G. Sylvand, "Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations," SIAM J. Sci. Comput., Vol. 27, No. 3, 774-792, 2005.

15. Ergul, O. and L. Gurel, "Iterative solutions of hybrid integral equations for coexisting open and closed surfaces," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1751-1758, Jun. 2009.

16. Araujo, M. G., J. M. Bertolo, F. Obelleiro, and J. L. Rodriguez, "Geometry based preconditioner for radiation problems involving wire and surface basis functions," Progress In Electromagnetics Research, Vol. 93, 29-40, 2009.

17. Benzi, M., "Preconditioning techniques for large linear systems: A survey," J. Comput. Phys., Vol. 182, No. 2, 418-477, Nov. 2002.

18. Malas, T. and L. Gurel, "Incomplete LU preconditioning with the multilevel fast multipole algorithm for electromagnetic scattering," SIAM J. Sci. Comput., Vol. 29, No. 4, 1476-1494, Jun. 2007.

19. Saad, Y., Iterative Methods for Sparse Linear Systems, SIAM, 2003.

20. Lee, J., J. Zhang, and C.-C. Lu, "Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems," J. Comput. Phys., Vol. 185, No. 1, 158-175, Feb. 2003.

21. Lee, J., J. Zhang, and C.-C. Lu, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics," IEEE Trans. Antennas and Propagat., Vol. 52, No. 9, 2277-2287, Sep. 2004.

22. Malas, T. and L. Gurel, "Accelerating the multilevel fast multipole algorithm with the sparse-approximate-inverse (SAI) preconditioning," SIAM J. Sci. Comput., Vol. 31, No. 3, 1968-1984, Mar. 2009.

23. Ding, D. Z., R. S. Chen, and Z. H. Fan, "An effcient SAI preconditioning technique for higher order hierarchical MLFMA implementation," Progress In Electromagnetics Research, Vol. 88, 255-273, 2008.

24. Gurel, L. and T. Malas, "Iterative near-field (INF) preconditioner for the multilevel fast multipole algorithm," SIAM J. Sci. Comput., accepted for publication.

25. Van den Eshof, J., G. L. G. Sleijpen, and M. B. van Gijzen, "Relaxation strategies for nested Krylov methods," J. Comput. Appl. Math., Vol. 177, No. 2, 347-365, May 2005.

26. Van der Vorst, H. and C. Vuik, "GMRESR: A family of nested GMRES methods," Numer. Linear Algebra Appl., Vol. 1, No. 4, 369-386, Jul. 1994.

27. Balay, S., W. D. Gropp, L. C. McInnes, and B. F. Smith, PETSc Users Manual, Tech. Report ANL-95/11|Revision 2.1.5, Argonne National Laboratory, 2004.

28. Carpentieri, B., I. S. Duff, and L. Giraud, "Experiments with sparse preconditioning of dense problems from electromagnetic applications,", Tech. Report TR/PA/00/04, CERFACS, Toulouse, France, 1999.

29. Gurel, L., H. Bagci, J.-C. Castelli, A. Cheraly, and F. Tardivel, "Validation through comparison: Measurement and calculation of the bistatic radar cross section of a stealth target," Radio Science, Vol. 38, No. 3, 12-1-12-10, Jun. 2003.