Vol. 127

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-04-27

Utilization of Screen Printed Low Curing Temperature Cobalt Nanoparticle Ink for Miniaturization of Patch Antennas

By Mikko Nelo, Arun Sowpati, Vamsi Krishna Palukuru, Jari Juuti, and Heli Jantunen
Progress In Electromagnetics Research, Vol. 127, 427-444, 2012
doi:10.2528/PIER12031408

Abstract

This investigation is one of the first steps towards the realization of low-cost, mass producible, miniaturized antenna solutions utilizing screen printed magnetic thick films of cobalt nanoparticle ink. The ink has a curing temperature lower than 125°C, feasible printing characteristics and metal loading higher than 85 wt.%. The properties are achieved by using an oxidatively polymerising natural fatty acid, linoleic acid, both as a surfactant and a binder. DSC-TGA-MS-analysis, TEM and SEM microscopies were utilized to investigate ink composition, nanoparticle coating and print quality. The resonant frequency of a microstrip patch antenna was tuned by screen printing of cobalt nanoparticle ink with different layer thicknesses on top of the antenna element. The influence of magnetic layers on resonance frequency, return loss, total efficiency and radiation pattern was measured and compared with a reference antenna without the magnetic films. For example, five layers of magnetic film (52 μm total thickness) tuned the resonance frequency (2.49 GHz) of the patch antenna by 68 MHz. The radiation efficiency of the patch antenna was increased from 39% to 43% by the loading of a 52 μm thick magnetic film compared to the reference antenna. The radiation patterns remained essentially unchanged, despite the presence of the magnetic thick films.

Citation


Mikko Nelo, Arun Sowpati, Vamsi Krishna Palukuru, Jari Juuti, and Heli Jantunen, "Utilization of Screen Printed Low Curing Temperature Cobalt Nanoparticle Ink for Miniaturization of Patch Antennas," Progress In Electromagnetics Research, Vol. 127, 427-444, 2012.
doi:10.2528/PIER12031408
http://www.jpier.org/PIER/pier.php?paper=12031408

References


    1. Lee, B. and F. J. Harackiewicz, "Miniature microstrip antenna with a partially filled high-permittivity substrate," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 8, 1160-1162, 2002.
    doi:10.1109/TAP.2002.801360

    2. Kula, J. S., D. Psychoudakis, W. J. Liao, C. C. Chen,J. L. Volakis, and J. W. Halloran, "Patch-antenna miniaturization using recently available ceramic substrates," IEEE Antennas and Propagation Magazine, Vol. 48, No. 6, 13-20, 2006.
    doi:10.1109/MAP.2006.323335

    3. Volakis, J. L., Antenna Engineering Handbook, 4th Edtion, Vol. 7, 3-4, The McGraw Hill Companies, 2007.

    4. Jackson, D. and N. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 9, 976-987, 1985.
    doi:10.1109/TAP.1985.1143709

    5. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2403-2414, 2004.
    doi:10.1109/TAP.2004.834135

    6. Rainville, P. J. and F. J. Harackiewicz, "Magnetic tuning of a microstrip patch antenna fabricated on a ferrite fim," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 12, 483-485, 1992.
    doi:10.1109/75.173402

    7. Brown, A. D., J. L. Volakis, L. C. Kempel, and Y. Botros, "Patch antennas on ferromagnetic substrates," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 1, 26-32, 1999.
    doi:10.1109/8.752980

    8. Do, T. B. and J. W. Halloran, "Fabrication of polymer magnetics," IEEE Antennas and Propagation Society International Symposium, 1709-1712, 2007.

    9. Volakis, J. L. and C. Chen, "Miniaturization and materials in antenna design," IDGA's Military Antennas 2007 Conference, Washington DC, Sep.2007.

    10. Chikazumi, S., Physics of Magnetism, Krieger Publishing Company, 1978.

    11. Sun, N. X., J. W. Wang, A. Daigle, C. Pettiford, H. Mosallaei,and C. Vittoria, "Electronically tunable magnetic patch antennas with metal magnetic films," Electronics Letters, Vol. 43, No. 8, 434-436, 2007.
    doi:10.1049/el:20070560

    12. Yang, G. M., A. Daigle, M. Liu, O. Obi, S. Stoute,K. Naishadham, and N. X. Sun, "Planar circular loop antennas with self-biased magnetic film loading," IEEE Antennas and Propagation Society International Symposium, AP-S 2008,1-4, 2008.

    13. Yang, G. M., X. Xing, A. Daigle, M. Liu, O. Obi, S. Stoute,K. Naishadham, and N. X. Sun, "Tunable miniaturized patch antennas with self-biased multilayer magnetic films," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 2190-2192, 2009.
    doi:10.1109/TAP.2009.2021972

    14. Rao, C. R. K. and D. C. Trivedi, "Biphasic synthesis of fatty acids stabilized silver nanoparticles: Role of experimental conditions on particle size," Mater. Chem. Phys., Vol. 99, No. 2-3, 354-360, 2006.
    doi:10.1016/j.matchemphys.2005.11.004

    15. Bell, N. S., M. E. Schendel, and M. Piech, "Rheological properties of nanopowder alumina coated with adsorbed fatty acids," J.Colloid Interface Sci., Vol. 287, No. 1, 94-106, 2005.
    doi:10.1016/j.jcis.2005.01.113

    16. Lan, Q., C. Liu, F. Yang, S. Liu, J. Xu, and D. Sun, "Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive pickering emulsions," J. Colloid Interface Sci., Vol. 310, No. 1, 260-269, 2007.
    doi:10.1016/j.jcis.2007.01.081

    17. Sailer, R. A. and M. D. Soucek, "Investigation of cobalt drier retardation," European Polymer Journal, Vol. 36, No. 4, 803-811, 2000.
    doi:10.1016/S0014-3057(99)00122-6

    18. Yang, T., R. N. C. Brown, L. C. Kempel, and P. Kofinas, "Surfactant-modified nickel zinc iron oxide/polymer nanocomposites for radio frequency applications," Journal of Nanoparticle Research, Vol. 12, No. 8, 2967-2978, 2010.
    doi:10.1007/s11051-010-9887-4

    19. Moser, A., K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe,Y. Ikeda, S. Sun, and E. E. Fullerton, "Magnetic recording:Advancing into the future," J. Phys. D, Vol. 35, No. 19, R157-R167, 2002.
    doi:10.1088/0022-3727/35/19/201

    20. Bigioni, T. P., X. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten,and H. M. Jaeger, "Kinetically driven self assembly of highly ordered nanoparticle monolayers," Nature Materials, Vol. 5, No. 4, 265-270, 2006.
    doi:10.1038/nmat1611

    21. Rudenkiy, S., M. Frerichs, F. Voigts, W. Maus-Friedrichs,V. Kempter, R. Brinkmann, N. Matoussevitch, W. Brijoux,H. BÄonnemann, N. Palina, and H. Modrow, "Study of the structure and stability of cobalt nanoparticles for ferrofluidic applications," Applied Organometallic Chemistry, Vol. 18, No. 10, 553-560, 2004.
    doi:10.1002/aoc.760

    22. Mornet, S., S. Vasseur, F. Grasset, and E. Duguet, "Magnetic nanoparticle design for medical diagnosis and therapy," Journal of Materials Chemistry, Vol. 14, No. 14, 2161-2175, 2004.
    doi:10.1039/b402025a

    23. Neuberger, T., B. SchÄopf, H. Hofmann, M. Hofmann, and B. Von Rechenberg, "Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system," J. Magn. Mater., Vol. 293, No. 1, 483-496, 2005.
    doi:10.1016/j.jmmm.2005.01.064

    24. Hu, A., G. T. Yee, and W. Lin, "Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones," J. Am. Chem. Soc., Vol. 127, No. 36, 12486-12487, 2005.
    doi:10.1021/ja053881o

    25. Pohjalainen, E., M. Pohjakallio, C. Johans, K. Kontturi,J. V. I. Timonen, O. Ikkala, R. H. A. Ras, T. Viitala, M. T. Heino,and E. T. SeppÄalÄa, "Cobalt nanoparticle langmuir-schaefer films on ethylene glycol subphase," Langmuir, Vol. 26, No. 17, 13937-13943, 2010.
    doi:10.1021/la101630q

    26. Aleksandrovic, V., D. Greshnykh, I. Randjelovic, A. FrÄomsdorf,A. Kornowski, S. V. Roth, C. Klinke, and H. Weller, "Preparation and electrical properties of cobalt-platinum nanoparticle monolayers deposited by the langmuir-blodgett technique," ACS Nano, Vol. 2, No. 6, 1123-1130, 2008.
    doi:10.1021/nn800147a

    27. Ago, H., J. Qi, K. Tsukagoshi, K. Murata, S. Ohshima, Y. Aoyagi,and M. Yumura, "Catalytic growth of carbon nanotubes and their patterning based on ink-jet and lithographic techniques," J. Electroanal. Chem., Vol. 559, 25-30, 2003.

    28. Nelo, M., A. K. Sowpati, V. K. Palukuru, J. Juuti, and H. Jantunen, "Formulation of screen printable cobalt nanoparticle ink for high frequency applications," Progress In Electromagnetics Research, Vol. 110, 253-266, 2010.
    doi:10.2528/PIER10102101

    29. Xanthos, M., Functional Fillers for Plastics, 2nd edtion, 119,Viley-Verlag GMBH, 2010.

    30. Wu, Y., Z.-X. Tang, Y. Xu, and B. Zhang, "Measure the complex permeability of ferromagnetic thin films: Comparison shorted microstrip method with microstrip transmission method," Progress In Electromagnetics Research Letters, Vol. 11, 173-181, 2009.
    doi:10.2528/PIERL09082004

    31. Liu, Y., L. Chen, C. Y. Tan, H. J. Liu, and C. K. Ong, "Broadband complex permeability characterization of magnetic thin films using shorted microstrip transmission-line perturbation," Rev.Sci. Instrum., Vol. 76, No. 6, 2005.
    doi:10.1063/1.1935429

    32. Wu, Y., Z. Tang, Y. Xu, B. Zhang, and X. He, "Measuring complex permeability of ferromagnetic thin film up to 10 GHz," Progress In Electromagnetics Research Letters, Vol. 9, 139-145, 2009.
    doi:10.2528/PIERL09061201

    33. Wu, Y., Z. Tang, Y. Xu, B. Zhang, and H. Xi, "A new shorted microstrip method to determine the complex permeability of thin films," IEEE Transactions on Magnetics, Vol. 46, No. 3, 886-888, 2010.
    doi:10.1109/TMAG.2009.2030886

    34. Iversen, P. O., P. Garreau, and D. Burrell, "Real-time spherical near-field handset antenna measurements," IEEE Antennas and Propagation Magazine, Vol. 43, No. 3, 90-94, 2001.
    doi:10.1109/74.934906

    35. Volakis, J. L., C. C. Chen, and K. Fujimoto, Small Antennas Miniaturization Techniques & Applications, 160, The McGraw.Hill Companies,2010.