Vol. 130

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Investigation of Fano Resonances Induced by Higher Order Plasmon Modes on a Circular Nano-Disk with an Elongated Cavity

By Muhammad Amin and Hakan Bagci
Progress In Electromagnetics Research, Vol. 130, 187-206, 2012


In this paper, a planar metallic nanostructure design, which supports two distinct Fano resonances in its extinction crosssection spectrum under normally incident and linearly polarized electromagnetic field, is proposed. The proposed design involves a circular disk embedding an elongated cavity; shifting and rotating the cavity break the symmetry of the structure with respect to the incident field and induce higher order plasmon modes. As a result, Fano resonances are generated in the visible spectrum due to the destructive interference between the sub-radiant higher order modes and super-radiant the dipolar mode. The Fano resonances can be tuned by varying the cavity's width and the rotation angle. An RLC circuit, which is mathematically equivalent to a mass-spring oscillator, is proposed to model the optical response of the nanostructure design.


Muhammad Amin and Hakan Bagci, "Investigation of Fano Resonances Induced by Higher Order Plasmon Modes on a Circular Nano-Disk with an Elongated Cavity," Progress In Electromagnetics Research, Vol. 130, 187-206, 2012.


    1. Halas, N. J., S. Lal, W.-S. Chang, S. Link, and P. Nordlander, "Plasmons in strongly coupled metallic nanostructures," Chem. Rev., Vol. 111, No. 6, 3913-3961, 2011.

    2. Mortazavi, D., A. Z. Kouzani, A. Kaynak, and W. Duan, "Developing LSPR design guidelines," Progress In Electromagnetics Research, Vol. 126, 203-235, 2012.

    3. Lal, S., S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics, Vol. 1, No. 11, 641-648, 2007.

    4. Brandl, D. W., N. A. Mirin, and P. Nordlander, "Plasmon modes of nanosphere trimers and quadrumers," J. Phys. Chem. B, Vol. 110, No. 25, 12302-12310, 2006.

    5. Chau, Y.-F., Z.-H. Jiang, H.-Y. Li, G.-M. Lin, F.-L. Wu, and W.-H. Lin, "Localized resonance of composite core-shell nanospheres, nanobars and nanospherical chains," Progress In Electromagnetics Research B, Vol. 28, 183-199, 2011.

    6. Renger, J., S. Grafström, L. Eng, and V. Deckert, "Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface," J. Opt. Soc. Am. A, Vol. 21, No. 7, 1362-1367, 2004.

    7. Mark, W. K. and J. H. Naomi, "Nanoshells to nanoeggs to nanocups: Optical properties of reduced symmetry coreshell nanoparticles beyond the quasistatic limit," New J. Phys., Vol. 10, No. 10, 105006, 2008.

    8. Hu, Y., S. Noelck, and R. Drezek, "Symmetry breaking in gold-silica-gold multilayer nanoshells," ACS Nano, Vol. 4, No. 3, 1521-1528, 2010.

    9. Hao, F., P. Nordlander, Y. Sonnefraud, P. Dorpe, and S. Maier, "Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing ," ACS Nano, Vol. 3, No. 3, 643-652, 2009.

    10. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garcia De Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett., Vol. 90, No. 5, 057401, 2003.

    11. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.

    12. Raymond Ooi, C. H., "Near-field and particle size effects in coherent raman scattering," Progress In Electromagnetics Research, Vol. 117, 479-494, 2011.

    13. Liu, X., J. Lin, T. F. Jiang, Z. F. Zhu, Q. Q. Zhan, J. Qian, and S. He, "Surface plasmon properties of hollow AuAg alloyed triangular nanoboxes and its applications in SERS imaging and potential drug delivery ," Progress In Electromagnetics Research, Vol. 128, 35-53, 2012.

    14. Luo, Z., T. Suyama, X. Xu, and Y. Okuno, "A grating-based plasmon biosensor with high resolution," Progress In Electromagnetics Research, Vol. 118, 527-539, 2011.

    15. Gong, Y., K. Li, J. Huang, N. J. Copner, A. Davies, L. Wang, and T. Duan, "Frequency-selective nanostructured plasmonic absorber by highly lossy interface mode," Progress In Electromagnetics Research, Vol. 124, 511-525, 2012.

    16. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.

    17. Han, L., S. Chen, A. Schulzgen, Y. Zeng, F. Song, J.-G. Tian, and N. Peyghambarian, "Calculation and optimization of electromagnetic resonances and local intensity enhancements for plasmon metamaterials with sub-wavelength double-slots," Progress In Electromagnetics Research, Vol. 113, 161-177, 2011.

    18. Rahimi, H., A. Namdar, S. Roshan Entezar, H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.

    19. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of l-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

    20. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011.

    21. Zhang, J. and N. A. Mortensen, "Ultrathin cylindrical cloak," Progress In Electromagnetics Research, Vol. 121, 381-389, 2011.

    22. Larsson, E. M., J. Alegret, M. Käll, and D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors," Nano Lett., Vol. 7, No. 5, 1256-1263, 2007.

    23. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, No. 3, 2257-2298, 2010.

    24. Abbasian, K., A. Rostami, and Z. D. Koozehkanani, "All-optical tunable mirror design using electromagnetically induced transparency," Progress In Electromagnetics Research M, Vol. 5, 25-41, 2008.

    25. Liu, Y., H. Jiang, C. Xue, W. Tan, H. Chen, and Y. Shi, "Fano resonances in a bilayer structure composed of two kinds of dispersive metamaterials," Progress In Electromagnetics Research Letters, Vol. 26, 49-57, 2011.

    26. Luk'yanchuk, B., N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater., Vol. 9, No. 9, 707-715, 2010.

    27. Papasimakis, N. and N. I. Zheludev, "Metamaterial-induced transparency: Sharp Fano resonances and slow light," Opt. Photonics News, Vol. 20, No. 10, 22-27, 2009.

    28. Bao, K., N. Mirin, and P. Nordlander, "Fano resonances in planar silver nanosphere clusters," Appl. Phys. A, Vol. 100, No. 2, 333-339, 2010.

    29. Fan, J., C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, "Self-assembled plasmonic nanoparticle clusters," Science, Vol. 328, No. 5982, 1135, 2010.

    30. Liu, S.-D., Z. Yang, R.-P. Liu, and X.-Y. Li, "Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity ," Opt. Express, Vol. 19, No. 16, 15363-15370, 2011.

    31. Yang, Z.-J., Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, Z.-H. Hao, and Q.-Q. Wang, "Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers," Opt. Lett., Vol. 36, No. 9, 1542-1544, 2011.

    32. Fan, J. A., K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, "Fano-like interference in self-assembled plasmonic quadrumer clusters ," Nano Lett., Vol. 10, No. 11, 4680-4685, 2010.

    33. Verellen, N., Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, "Fano resonances in individual coherent plasmonic nanocavities," Nano Lett., Vol. 9, No. 4, 1663-1667, 2009.

    34. Liu, H., N. Wang, Y. Liu, Y. Zhao, and X. Wu, "Light transmission properties of double-overlapped annular apertures," Opt. Lett., Vol. 36, No. 3, 385-387, 2011.

    35. Mukherjee, S., H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, "Fanoshells: Nanoparticles with built-in Fano resonances," Nano Lett., Vol. 10, No. 7, 2694-2701, 2010.

    36. Sonnefraud, Y., N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, "Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities," ACS Nano, Vol. 4, No. 3, 1664-1670, 2010.

    37. Singh, R., I. A. I. Al-Naib, M. Koch, and W. Zhang, "Sharp Fano resonances in THz metamaterials," Opt. Express, Vol. 19, No. 7, 6312-6319, 2011.

    38. Dong, Z.-G., H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, "Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency ," Opt. Express, Vol. 18, No. 21, 22412-22417, 2010.

    39. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.

    40. Habteyes, T. G., S. Dhuey, S. Cabrini, P. J. Schuck, and S. R. Leone, "Theta-shaped plasmonic nanostructures: Bringing `dark' multipole plasmon resonances into action via conductive coupling ," Nano Lett., Vol. 11, No. 4, 1819-1825, 2011.

    41. Fang, Z., J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, "Removing a wedge from a metallic nanodisk reveals a Fano resonance ," Nano Lett., Vol. 11, No. 10, 4475-4479, 2011.

    42. Rahmani, M., B. Luk'yanchuk, B. Ng, A. K. G. Tavakkoli, Y. F. Liew, and M. H. Hong, "Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers," Opt. Express, Vol. 19, No. 6, 4949-4956, 2011.

    43. Rahmani, M., T. Tahmasebi, Y. Lin, B. Luk'yanchuk, T. Liew, and M. Hong, "Influence of plasmon destructive interferences on optical properties of gold planar quadrumers ," Nanotechnology, Vol. 22, 245204, 2011.

    44. Liu, N., L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the drude damping limit," Nat. Mater., Vol. 8, No. 9, 758-762, 2009.

    45. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, No. 5644, 419-422, 2003.

    46. Wang, H., Y. Wu, B. Lassiter, C. Nehl, J. Hafner, P. Nordlander, and N. Halas, "Symmetry breaking in individual plasmonic nanoparticles," PNAS, Vol. 103, No. 29, 10856, 2006.

    47. Bardhan, R., N. K. Grady, T. Ali, and N. J. Halas, "Metallic nanoshells with semiconductor cores: Optical characteristics modified by core medium properties," ACS Nano, Vol. 4, No. 7, 6169-6179, 2010.

    48. Multiphysics, C., V. 3.5 a, COMSOL AB, Sweden, 2009.

    49. Johnson, P. and R. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370-4379, 1972.

    50. Ni, X., Z. Liu, and A. V. Kildishev, PhotonicsDB: Optical constants, 2008, doi: 10254/nanohub-r3692.10.

    51. Park , T.-H., Plasmonic properties of metallic nanostructures, Ph.D. Thesis, Rice University, Houstan Texas, 2009.

    52. Kang, L., V. Sadaune, and D. Lippens, "Numerical analysis of enhanced transmission through a single subwavelength aperture based on Mie resonance single particle," Progress In Electromagnetics Research, Vol. 113, 211-226, 2011.

    53. Rahmani, M., B. Lukiyanchuk, T. T. V. Nguyen, T. Tahmasebi, Y. Lin, T. Y. F. Liew, and M. H. Hong, "Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization ," Opt. Mater. Express, Vol. 1, No. 8, 1409-1415, 2011.

    54. http://www.originlab.com, Accessed 5, May 2012.