Vol. 137
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-26
A Theoretical Model for the Frequency-Dependent Dielectric Properties of Corneal Tissue at Microwave Frequencies
By
Progress In Electromagnetics Research, Vol. 137, 389-406, 2013
Abstract
This paper presents a structured model of the dielectric properties of the corneal tissue at microwave frequencies, based on the fine structure and chemical composition of its constituents. This is accomplished by appropriately combining the known properties of tissue substructures using mixing rules, in order to obtain the effective macroscopic properties of the medium. The presented approach is multi-scale: it begins from the microscopic scale and derives the macroscopic properties after several scale-steps. The predictions of the model agree with the existing measured data in the literature. Verification and analysis of the model sensitivity to input parameters has been presented. The model is expected to find application in non-invasive medical sensing where it can relate dielectric response to pathological structural changes in the tissue. The model is also useful for the prediction of dielectric properties for high-frequency computational dosimetry, and for understanding the physical mechanisms behind the macroscopic dielectric behaviour in general.
Citation
Mehrdad Saviz, and Reza Faraji-Dana, "A Theoretical Model for the Frequency-Dependent Dielectric Properties of Corneal Tissue at Microwave Frequencies," Progress In Electromagnetics Research, Vol. 137, 389-406, 2013.
doi:10.2528/PIER12112510
References

1. Huang, K., X. B. Xu, L. P. Yan, and M. Zhang, "A new noninvasive method for determining the conductivity of tissue embedded in multilayer biological structure," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 6, 851-860, 2002.
doi:10.1163/156939302X00192

2. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, 257-263, 1988.
doi:10.1109/10.1374

3. Yan, L. P., K. M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.

4. Gabriel, C., "Dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz,", IFAC (L'Istituto di Fisica Applicata Nello Carrara") Website,-2010, Available at: Hyperlink, http://niremf.ifac.cnr.it/tissprop, Accessed February 1, 2012.

5. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER06040601

6. Zhang, M. and A. Alden, "Calculation of whole-body sar from a 100MHz dipole antenna," Progress In Electromagnetics Research, Vol. 119, 133-153, 2011.
doi:10.2528/PIER11052005

7. Mohsin, S. A., "Concentration of the specific absorption rate around deep brain stimulation electrodes during MRI," Progress In Electromagnetics Research, Vol. 121, 469-484, 2011.
doi:10.2528/PIER11022402

8. Otin, R. and H. Gromat, "Specific absorption rate computations with a nodal-based finite element formulation," Progress In Electromagnetics Research, Vol. 128, 399-418, 2012.

9. Theilmann, P. T., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally e±cient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012.

10. Basar, M. R., M. F. B. A. Malek, K. M. Juni, M. I. M. Saleh, M. S. Idris, L. Mohamed, N. Saudin, N. A. Mohd Affendi, and A. Ali, "The use of a human body model to determine the variation of path losses in the human body channel in wireless capsule endoscopy," Progress In Electromagnetics Research, Vol. 133, 495-513, 2013.

11. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies,", Final Report Prepared for AFOSR/NL, 1996.

12. Walker, D. C., B. H. Brown, R. H. Smallwood, D. R. Hose, and D. M. Jones, "Modelled current distribution in cervical squamous tissue," Physiol. Meas., Vol. 23, 159-168.

13. Huclova, S., D. Erni, and J. Frohlich, "Modelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition," J. Physics D: Applied Physics, Vol. 45, 025301, 2012.
doi:10.1088/0022-3727/45/2/025301

14. Singh, R. S., P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E. R. Brown, W. S. Grundfest, and M. O. Culjat, "Terahertz sensing of corneal hydration," Proc. 32nd Annumal Int'l Conf., IEEE EMBS, 2010.

15. Spathmann, O., T. Fiedler, V. Hansen, M. Saviz, J. Streckert, M. Zang, M. Clemens, K. Statnikov, and U. Pfeiffer, "Attempts for exposure assessment in the THz frequency range using numerical computations," Proc. EMC Europe, Rome, Italy, 2012.

16. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

17. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

18. Peyman, A., S. Holden, and C. Gabriel, "Measurement of the dielectric properties of biological tissues in vivo at microwave frequencies,", Mobile Telecommunications and Health Research Programme, RUM 3, Final Report, 2005.

19. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, 2251-2256, 1996.
doi:10.1088/0031-9155/41/11/002

20. Remington, L. A., Clinical Anatomy of the Visual System, 3rd Edition, Butterworth Heinemann, Ed., Elsevier, 2012.

21. Hayashi, S., T. Osawa, and K. Tohyama, "Comparative observations on corneas, with special reference to Bowman's layer and Descemet's membrane in mammals and amphibians," J. Morphol., Vol. 254, No. 3, 247-258, 2002.
doi:10.1002/jmor.10030

22. Kadler, K. E., D. F. Holmes, J. A. Trotter, and J. A. Chapman, "Collagen fibril formation," Biochem. J., Vol. 316, 1-11, 1996.

23. Hahnel, C., S. Somodi, D. G. Weiss, and R. F. Guthoff, "The keratocyte network of human cornea: A three-dimensional study using confocal laser scanning fluorescence microscopy," Cornea, Vol. 19, No. 2, 185-193, 2000.
doi:10.1097/00003226-200003000-00012

24. Almubrad, T. and S. Akhtar, "Structure of corneal layers, collagen fibrils, and proteoglycans of tree shrew cornea," J. Molecular Vision, Vol. 17, 2283-2291, 2011.

25. Boote, C., S. Hayes, M. Abahussin, and K. M. Meek, "Mapping collagen organization in the human cornea: Left and right eyes are structurally distinct," IOVS, Vol. 47, 901-908, 2006.

26. Meek, K. M. and D. W. Leonard, "Ultrastructure of the corneal stroma: A comparative study," Biophys. J., Vol. 64, 273-280, 1993.
doi:10.1016/S0006-3495(93)81364-X

27. Kim, J. H., K. Green, M. Martinez, and D. Paton, "Solute permeability of the corneal endothelium and Descemet's membrane," Exp. Eye Res., Vol. 12, 231-238, 1971.
doi:10.1016/0014-4835(71)90143-6

28. Sihvola, A., "Mixing rules with complex dielectric coefficients," Subsurface Sensing Technologies and Applications, Vol. 1, 393-415, 2000.
doi:10.1023/A:1026511515005

29. Gimsa, J., T. Muller, T. Schnelle, and G. Fuhr, "Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: Dispersion of the cytoplasm," Biochem. J., Vol. 71, 495-506, 1996.

30. Wei, Y. Z. and S. Sridhar, "Dielectric spectroscopy up to 20 GHz of LiCl/H2O solutions," J. Chem. Phys., Vol. 92, 923-928, 1990.
doi:10.1063/1.458074

31. Grant, H. E., "The dielectric method of investigating bound water in biological material: An appraisal of the technique," Bioelectromagnetics, Vol. 3, 17-24, 1982.
doi:10.1002/bem.2250030106

32. Pekonen, O., K. Karkkainen, A. Sihvola, and K. Nikoskinen, "Numerical testing of dielectric mixing rules by FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 1, 67-87, 1999.
doi:10.1163/156939399X01618

33. Giordano, S., "Effective medium theory for dispersions of dielectric ellipsoids," J. of Electrostatics, Vol. 58, 59-76, 2003.
doi:10.1016/S0304-3886(02)00199-7

34. Peyman, A. and C. Gabriel, "Cole-Cole parameters for the dielectric properties of porcine tissues as a function of age at microwave frequencies," Phys. Med. Biol., Vol. 55, N413-N419, 2010.
doi:10.1088/0031-9155/55/15/N02

35. Dawkins, A. W. J., C. Gabriel, R. J. Sheppard, and E. H. Grant, "Electrical properties of lens material at microwave frequencies," Phys. Med. Biol., Vol. 26, 1-9, 1981.
doi:10.1088/0031-9155/26/1/002

36. Pottel, R., D. Adolph, and U. Kaatze, "Dielectric relaxation in aqueous solutions of some dipolar organic molecules," Berichte der Bunsengesellschaft fÄur physikalische Chemie, Vol. 79, 278-285, 1975.
doi:10.1002/bbpc.19750790308

37. Kaatze, U., "On the existence of bound water in biological systems as probed by dielectric spectroscopy," Phys. Med. Biol., Vol. 35, 1663, 1990.
doi:10.1088/0031-9155/35/12/006

38. Jay, L., A. Brocas, K. Singh, J. C. Kieffer, I. Brunette, and T. Ozaki, "Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy," Optics Expres., Vol. 16, 16284-16293, 2008.
doi:10.1364/OE.16.016284

39. Michelacci, Y. M., "Collagens and proteoglycans of the corneal extracellular matrix," Brazillian J. of Medical and Biological Research, Vol. 36, 1037-1046, 2003.
doi:10.1590/S0100-879X2003000800009

40. Leonard, D. W. and K. M. Meek, "Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma," Biophys. J., Vol. 72, 1382-1387, 1997.
doi:10.1016/S0006-3495(97)78784-8

41. Ameen, D. B., M. F. Bishop, and T. McMullen, "A lattice model for computing the transmissivity of the cornea and sclera," Biophys. J., Vol. 75, 2520-2531, 1998.
doi:10.1016/S0006-3495(98)77697-0

42. Hahnel, C., S. Somodi, C. Slowik, D. G. Weiss, and R. F. Guthoff, "Fluorescence microscopy and three-dimensional imaging of the porcine corneal keratocyte network," Graefe's Arch. Clin. Exp. Ophthalmol., Vol. 235, 773-779, 1997.
doi:10.1007/BF02332862

43. Liebe, H. J., G. A. Hufford, and T. Manabe, "A model for the complex permittivity of water at frequencies below 1 THz," Int'l J. Infrared and Millimeter Waves, Vol. 12, 659-675, 1991.
doi:10.1007/BF01008897

44. Simeonova, M. and J. Gimsa, "The influence of the molecular structure of lipid membranes on the electric field distribution and energy absorption," Bioelectromagnetics, Vol. 27, 652-666, 2006.
doi:10.1002/bem.20259

45. Doughty, M. J., W. Seabert, J. P. G. Bergmanson, and and, "A Descriptive and qualitative study of keratocytes of the corneal stroma of albino rabbits using transmission electron microscopy," Tissues and Cells, Vol. 33, 408-412, 2001.
doi:10.1054/tice.2001.0195

46. Piersol, G. A., "Eye: Cornea," Human Anatomy, Including Structure and Development and Practical Considerations, Vol. II, 1913:1450, J. B. Lippincott Company, Philadelphia, 1919.