Vol. 164
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-04-09
Decoupling of Two Closely Located Dipoles by a Single Passive Scatterer for Ultra-High Field MRI
By
Progress In Electromagnetics Research, Vol. 164, 155-166, 2019
Abstract
We report decoupling of two closely located resonant dipole antennas dedicated for ultra-high field magnetic resonance imaging (MRI). We show that a scatterer slightly raised over the plane of antennas grants a sufficient decoupling even for antennas separated by very small gap (below 1/30 of the wavelength). We compare the operations of two decoupling scatterers. One of them is a shortcut resonant dipole, and the other is a split-loop resonator (SLR). Previously, we have shown that the SLR offers a wider operational band than the dipole and the same level of decoupling. However, it was so for an array in free space. The presence of the body phantom drastically changes the decoupling conditions. Moreover, the requirement to minimize the parasitic scattering from the decoupling element into the body makes the decoupling dipole much more advantageous than the SLR.
Citation
Masoud Sharifian Mazraeh Mollaei, Sergei Alexandrovich Kurdjumov, Anna Hurshkainen, and Constantin Rufovich Simovski, "Decoupling of Two Closely Located Dipoles by a Single Passive Scatterer for Ultra-High Field MRI," Progress In Electromagnetics Research, Vol. 164, 155-166, 2019.
doi:10.2528/PIER18101703
References

1. Juntu, J., J. Sijbers, D. Van Dyck, and J. Gielen, "Bias field correction for MRI images," Comp. Recog. Sys., Vol. 32, 543-551, 2005.

2. Baselice, F., G. Ferraioli, and A. Shabou, "Field map reconstruction in magnetic resonance imaging using Bayesian estimation," Sensors, Vol. 10, No. 1, 266-279, 2010.
doi:10.3390/s100100266

3. Olafsson, V. T., D. C. Noll, and J. A. Fessler, "Fast joint reconstruction of dynamic R2 and field maps in functional MRI," IEEE Trans. Med. Imag., Vol. 27, No. 9, 1177-1188, 2008.
doi:10.1109/TMI.2008.917247

4. Mao, W., M. B. Smith, and C. M. Collins, "Exploring the limits of RF shimming for high-field MRI of the human head," Magn. Reson. Med., Vol. 56, No. 4, 918-922, 2006.
doi:10.1002/mrm.21013

5. Ibrahim, T. S. and L. Tang, "Insight into RF power requirements and B1 field homogeneity for human MRI via rigorous FDTD approach," J. Magn. Reson. Imaging, Vol. 25, No. 6, 1235-1247, 2007.
doi:10.1002/jmri.20919

6. Avdievich, N. I., J. W. Pan, and H. P. Hetherington, "Resonant inductive decoupling (RID) for transceiver arrays to compensate for both reactive and resistive components of the mutual impedance," NMR Biomed., Vol. 26, No. 11, 1547-1554, 2013.
doi:10.1002/nbm.2989

7. Von Morze, C., J. Tropp, S. Banerjee, D. Xu, K. Karpodinis, L. Carvajal, C. P. Hess, P. Mukherjee, S. Majumdar, and D. B. Vigner, "An eight-channel, nonoverlapping phased array coil with capacitive decoupling for parallel MRI at 3 T," Concepts in Magnetic Resonance B: Magnetic Resonance Engineering, Vol. 31, 37-43, 2007.
doi:10.1002/cmr.b.20078

8. Van de Moortele, P. F., T. Vaughan, and K. A. Ugurbil, "A 32-channel lattice transmission line array for parallel transmit and receive MRI at 7 Tesla," Magn. Reson. Med., Vol. 63, No. 6, 1478-1485, 2010.
doi:10.1002/mrm.22413

9. Adriany, G., P. F. Van de Moortele, F. Wiesinger, S. Moeller, J. P. Strupp, P. Andersen, C. Snyder, X. Zhang, X. Chen, K. P. Pruessmann, P. Boesiger, J. T. Vaughan, and K. Ugurbil, "Transmit and receive transmission line arrays for 7 Tesla parallel imaging," Magn. Reson. Med., Vol. 53, 434-445, 2005.
doi:10.1002/mrm.20321

10. Padormo, F., A. Beqiri, J. V. Hajnal, and S. J. Malik, "Parallel transmission for ultrahigh-field imaging," NMR Biomed., Vol. 29, No. 9, 1145-1161, 2015.
doi:10.1002/nbm.3313

11. Filonov, D. S., A. S. Shalin, I. Irosh, P. A. Belov, and P. Ginzburg, "Controlling electromagnetic scattering with wire metamaterial resonators," J. Opt. Soc. Am. A, Vol. 33, No. 10, 1910-1916, 2016.
doi:10.1364/JOSAA.33.001910

12. Hurshkainen, A. A., T. A. Derzhavskaya, S. G. Glybovski, I. J. Voogt, I. V. Melchakova, C. A. T. Van den Berg, and A. J. E. Raaijmakers, "Element decoupling of 7 T dipole body arrays by EBG metasurface structures: Experimental verification," J. Mag. Reson., Vol. 269, 87-96, 2016.
doi:10.1016/j.jmr.2016.05.017

13. Fenn, A. J., Adaptive Antennas and Phased Arrays for Radar and Communications, Artech House, NY, 2008.

14. Lau, B. K. and J. B. Andersen, "Simple and efficient decoupling of compact arrays with parasitic scatterers," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 464-472, 2012.
doi:10.1109/TAP.2011.2173440

15. Mollaei, M. S. M., A. Hurshkainen, S. Kurdjumov, S. Glybovski, and C. Simovski, "Passive electromagnetic decoupling in an active metasurface of dipoles," Phot. Nanost. Fund. Appl., DOI.org/10.1016/j.photonics.2018.10.001.

16. Mollaei, M. S. M., A. Hurshkainen, S. Glybovski, and C. Simovski, "Decoupling of two closely located dipole antennas by a split-loop resonator," Radio Sci., Vol. 53, No. 11, 1398-1405, 2018.
doi:10.1029/2018RS006679

17. Krasnok, A. E., A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, "An antenna model for the Purcell effect," Scientific Reports, Vol. 5, 1-12, 2015.

18. Pethig, R., "Dielectric properties of body tissues," Clin. Phys. Physiol. Meas., Vol. 8, 5-12, 1987.
doi:10.1088/0143-0815/8/4A/002

19. Halter, R. J., A. Schned, J. Heaney, A. Hartov, and K. D. Paulsen, "Electrical properties of prostatic tissues: I. Single frequency admittivity properties," J. Urol., Vol. 182, No. 4, 1600-1607, 2009.
doi:10.1016/j.juro.2009.06.007

20. Giovanetti, G., F. Frija, L. Menichetti, V. Hartwig, V. Viti, and L. Landini, "An efficient method for electrical conductivity measurement in the RF range," Concepts in Magnetic Resonance Research B, Vol. 37B, 160-165, 2010.
doi:10.1002/cmr.b.20165