Vol. 164

Latest Volume
All Volumes
All Issues

Decoupling of Two Closely Located Dipoles by a Single Passive Scatterer for Ultra-High Field MRI

By Masoud Sharifian Mazraeh Mollaei, Sergei Alexandrovich Kurdjumov, Anna Hurshkainen, and Constantin Rufovich Simovski
Progress In Electromagnetics Research, Vol. 164, 155-166, 2019


We report decoupling of two closely located resonant dipole antennas dedicated for ultra-high field magnetic resonance imaging (MRI). We show that a scatterer slightly raised over the plane of antennas grants a sufficient decoupling even for antennas separated by very small gap (below 1/30 of the wavelength). We compare the operations of two decoupling scatterers. One of them is a shortcut resonant dipole, and the other is a split-loop resonator (SLR). Previously, we have shown that the SLR offers a wider operational band than the dipole and the same level of decoupling. However, it was so for an array in free space. The presence of the body phantom drastically changes the decoupling conditions. Moreover, the requirement to minimize the parasitic scattering from the decoupling element into the body makes the decoupling dipole much more advantageous than the SLR.


Masoud Sharifian Mazraeh Mollaei, Sergei Alexandrovich Kurdjumov, Anna Hurshkainen, and Constantin Rufovich Simovski, "Decoupling of Two Closely Located Dipoles by a Single Passive Scatterer for Ultra-High Field MRI," Progress In Electromagnetics Research, Vol. 164, 155-166, 2019.


    1. Juntu, J., J. Sijbers, D. Van Dyck, and J. Gielen, "Bias field correction for MRI images," Comp. Recog. Sys., Vol. 32, 543-551, 2005.

    2. Baselice, F., G. Ferraioli, and A. Shabou, "Field map reconstruction in magnetic resonance imaging using Bayesian estimation," Sensors, Vol. 10, No. 1, 266-279, 2010.

    3. Olafsson, V. T., D. C. Noll, and J. A. Fessler, "Fast joint reconstruction of dynamic R2 and field maps in functional MRI," IEEE Trans. Med. Imag., Vol. 27, No. 9, 1177-1188, 2008.

    4. Mao, W., M. B. Smith, and C. M. Collins, "Exploring the limits of RF shimming for high-field MRI of the human head," Magn. Reson. Med., Vol. 56, No. 4, 918-922, 2006.

    5. Ibrahim, T. S. and L. Tang, "Insight into RF power requirements and B1 field homogeneity for human MRI via rigorous FDTD approach," J. Magn. Reson. Imaging, Vol. 25, No. 6, 1235-1247, 2007.

    6. Avdievich, N. I., J. W. Pan, and H. P. Hetherington, "Resonant inductive decoupling (RID) for transceiver arrays to compensate for both reactive and resistive components of the mutual impedance," NMR Biomed., Vol. 26, No. 11, 1547-1554, 2013.

    7. Von Morze, C., J. Tropp, S. Banerjee, D. Xu, K. Karpodinis, L. Carvajal, C. P. Hess, P. Mukherjee, S. Majumdar, and D. B. Vigner, "An eight-channel, nonoverlapping phased array coil with capacitive decoupling for parallel MRI at 3 T," Concepts in Magnetic Resonance B: Magnetic Resonance Engineering, Vol. 31, 37-43, 2007.

    8. Van de Moortele, P. F., T. Vaughan, and K. A. Ugurbil, "A 32-channel lattice transmission line array for parallel transmit and receive MRI at 7 Tesla," Magn. Reson. Med., Vol. 63, No. 6, 1478-1485, 2010.

    9. Adriany, G., P. F. Van de Moortele, F. Wiesinger, S. Moeller, J. P. Strupp, P. Andersen, C. Snyder, X. Zhang, X. Chen, K. P. Pruessmann, P. Boesiger, J. T. Vaughan, and K. Ugurbil, "Transmit and receive transmission line arrays for 7 Tesla parallel imaging," Magn. Reson. Med., Vol. 53, 434-445, 2005.

    10. Padormo, F., A. Beqiri, J. V. Hajnal, and S. J. Malik, "Parallel transmission for ultrahigh-field imaging," NMR Biomed., Vol. 29, No. 9, 1145-1161, 2015.

    11. Filonov, D. S., A. S. Shalin, I. Irosh, P. A. Belov, and P. Ginzburg, "Controlling electromagnetic scattering with wire metamaterial resonators," J. Opt. Soc. Am. A, Vol. 33, No. 10, 1910-1916, 2016.

    12. Hurshkainen, A. A., T. A. Derzhavskaya, S. G. Glybovski, I. J. Voogt, I. V. Melchakova, C. A. T. Van den Berg, and A. J. E. Raaijmakers, "Element decoupling of 7 T dipole body arrays by EBG metasurface structures: Experimental verification," J. Mag. Reson., Vol. 269, 87-96, 2016.

    13. Fenn, A. J., Adaptive Antennas and Phased Arrays for Radar and Communications, Artech House, NY, 2008.

    14. Lau, B. K. and J. B. Andersen, "Simple and efficient decoupling of compact arrays with parasitic scatterers," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 464-472, 2012.

    15. Mollaei, M. S. M., A. Hurshkainen, S. Kurdjumov, S. Glybovski, and C. Simovski, "Passive electromagnetic decoupling in an active metasurface of dipoles," Phot. Nanost. Fund. Appl., DOI.org/10.1016/j.photonics.2018.10.001.

    16. Mollaei, M. S. M., A. Hurshkainen, S. Glybovski, and C. Simovski, "Decoupling of two closely located dipole antennas by a split-loop resonator," Radio Sci., Vol. 53, No. 11, 1398-1405, 2018.

    17. Krasnok, A. E., A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, "An antenna model for the Purcell effect," Scientific Reports, Vol. 5, 1-12, 2015.

    18. Pethig, R., "Dielectric properties of body tissues," Clin. Phys. Physiol. Meas., Vol. 8, 5-12, 1987.

    19. Halter, R. J., A. Schned, J. Heaney, A. Hartov, and K. D. Paulsen, "Electrical properties of prostatic tissues: I. Single frequency admittivity properties," J. Urol., Vol. 182, No. 4, 1600-1607, 2009.

    20. Giovanetti, G., F. Frija, L. Menichetti, V. Hartwig, V. Viti, and L. Landini, "An efficient method for electrical conductivity measurement in the RF range," Concepts in Magnetic Resonance Research B, Vol. 37B, 160-165, 2010.